Project description:Transcriptional profiling of adapted tolerant industrial yeast Saccharomyces cerevisiae NRRL Y-50049 compared with its parental wild type NRRL Y-12632 in response to challenge of furfural and HMF each at 20 mM. Y-50049 is able to detoxify toxic furan aldehydes in situ while produce ethanol. Under the same conditions, the wild type Y-12632 was repressed and unable to grow and function.
Project description:Adapted tolerant yeast strain Y-50049 is able to in situ detoxify furfural and HMF while the wild type control Y-12632 repressed to loss function under challenges of 20 mM each of furfural and HMF
Project description:Adapted tolerant yeast strain Y-50049 is able to in situ detoxify furfural and HMF while the wild type control Y-12632 repressed to loss function under challenges of 20 mM each of furfural and HMF A time course study during the lag phase with cells harvested at 18, 24, 28, and 42 h after 20 mM furfural and 20 mM HMF treatment
Project description:The inhibitors hydroxymethylfurfural (HMF) and furfural were added to the feed-medium of carbon-limited anaerobic chemostat cultures. Samples were taken for transcriptome analysis at steady-state from cultures with inhibitors and without inhibitors.
Project description:HMF and furfural were pulse added to xylose-utilizing Saccharomyces cerevisiae during either the glucose consumption phase or the xylose consumption phase. Transcriptome samples were collected before and one hour after pulsing of inhibitors.
Project description:The inhibitors hydroxymethylfurfural (HMF) and furfural were added to the feed-medium of carbon-limited anaerobic chemostat cultures. Samples were taken for transcriptome analysis at steady-state from cultures with inhibitors and without inhibitors. Three biological replicates from each condition (inhibitors, no inhibitors) were analyzed.
Project description:HMF and furfural were pulse added to xylose-utilizing Saccharomyces cerevisiae during either the glucose consumption phase or the xylose consumption phase. Transcriptome samples were collected before and one hour after pulsing of inhibitors. Three biological replicates from each conditions analyzed.
Project description:Cellular tolerance toward furfural is a complex phenotype involved many genes, and hard to be improved by manipulating individual genes. We previously established exogenous global regulator IrrE mutants that confer Escherichia coli with significantly enhanced tolerance to furfural stress. In order to elucidate the mechanism for enhancement of furfural tolerance in the mutants and to identify new genes and pathways that can be possible targets for engineering of furfural tolerance, we carried out comparative transcriptomic with the representative strains F1-37 and WT (harboring the furfural-tolerant mutant F1-37 of IrrE and the wild type IrrE, respectively). The data from transcriptome analyses were deposited here.
Project description:Cellular tolerance toward furfural is a complex phenotype involved many genes, and hard to be improved by manipulating individual genes. We previously established exogenous global regulator IrrE mutants that confer Escherichia coli with significantly enhanced tolerance to furfural stress. In order to elucidate the mechanism for enhancement of furfural tolerance in the mutants and to identify new genes and pathways that can be possible targets for engineering of furfural tolerance, we carried out comparative transcriptomic with the representative strains F1-37 and WT (harboring the furfural-tolerant mutant F1-37 of IrrE and the wild type IrrE, respectively). The data from transcriptome analyses were deposited here. Cells of furfural-tolerant mutant F1-37 and wild-type strain WT were grown in LB medium supplemented with furfural, and the cells were harvested in the exponential phase. The samples for both of these two strains were prepared in triplicate with biological replicates.
Project description:We have previously shown that fed-batch processes with the longest uncoupling phase (ethanol adapted) were characterized by induction of storage carbohydrates, a metabolic event typical of yeast cells experiencing nutrient limitation, at the onset of this phase, whereas this metabolic event was not seen in processes with a short uncoupling phase (ethanol non adapted culture). Taken together, our results suggested that reproducible high bioethanol performance in aerated fed-batch process may be linked to the ability of yeast cells to impede ethanol toxicity by triggering a metabolic remodelling reminiscent to that of cells entering a quiescent G0/G1 state. The aim of this study was to search for genes implicated in the induction an ethanol adapted culture vs ethanol non-adapted culture.