Project description:The branched-chain amino acid (BCAA) metabolism plays pleiotropic roles in homeostasis. Here we show that human acute leukemia-initiating cells (LICs), but not normal hematopoietic stem cells, are heavily addicted to the BCAA metabolism, irrespective of myeloid or lymphoid types. To clarify how BCAA metabolism affect the gene expression of human acute leukemia cells, we examined the gene expression alteration in human acute leukemia cell lines in control and BCAA-resrticted culture conditions.
Project description:The branched-chain amino acid (BCAA) metabolism plays pleiotropic roles in homeostasis. Here we show that human acute leukemia-initiating cells (LICs), but not normal hematopoietic stem cells, are heavily addicted to the BCAA metabolism, irrespective of myeloid or lymphoid types. To clarify how BCAA metabolism affect the gene expression of human acute leukemia cells, we examined the gene expression alteration in human acute leukemia cell lines in control and BCAA-resrticted culture conditions.
Project description:The branched-chain amino acid (BCAA) metabolism plays pleiotropic roles in homeostasis. Here we show that human acute leukemia-initiating cells (LICs), but not normal hematopoietic stem cells, are heavily addicted to the BCAA metabolism, irrespective of myeloid or lymphoid types. To clarify how BCAA metabolism affect the gene expression of human acute leukemia cells, we examined the gene expression alteration in human acute leukemia cell lines in control and BCAA-resrticted culture conditions.
Project description:To clarify the global gene expression alteration in primary CD34+ AML cells after BCAA metabolism inhibition, CD34+ AML cells were treated with or without gabapentin in vitro. After 9-12 hours of culture with or without gabapentin, FACS-purified CD34+ AML cells were subjected to transcriptome analysis.
Project description:To clarify the global gene expression alteration in primary CD34+ ALL cells after BCAA metabolism inhibition, CD34+ AML cells were treated with or without gabapentin in vitro. After 9-12 hours of culture with or without gabapentin, FACS-purified CD34+ ALL cells were subjected to transcriptome analysis.
Project description:To globally evaluate transcriptome in THP-1 and decitabine-resistant THP-1 cells treated by decitabine, cells were treated with the IC90 dose of decitabine until 90% cell death was reached, then cultured in decitabine-free medium until confluence, followed by another round of decitabine treatment and the treatment cycles were repeated for 3 months to generate decitabine-resistant THP-1 cells. We then performed gene expression profiling analysis using data obtained from RNA-seq of THP-1 or decitabine-resistant THP-1 cells treated with or without decitabine.