Project description:Agelena koreana is indigenous spider in South Korea that lives on piles of trees building webs. RNA-sequencing was performed for venom gland tissue and whole body except venom gland.
Project description:Callobius koreanus (C.koreanus) is a wandering spider and a member of the Amaurobiidae family, infraorder Araneae. RNA-sequencing was performend for venom gland tissue and whole body except venom gland.
Project description:The Tibellus genus spider is an active hunter that does not spin webs and remains highly underinvestigated in terms of the venom composition. Here, we present a combination of venom glands transcriptome cDNA analysis, venom proteome analysis for unveiling of the Tibellus genus spider venom composition.
Project description:Spiders are a highly diverse group of arthropods that occur in most habitats on land. Notably, spiders have significant ecological impact as predators because of their extraordinary prey capture adaptations, venom and silk. Spider venom is among the most heterogeneous animal venoms and has pharmacological applications, while spider silk is characterized by great toughness with potential for biomaterial application. We describe the genome sequences of two spiders representing two major taxonomic groups, the social velvet spider Stegodyphus mimosarum (Araneomorphae), and the Brazilian white-knee tarantula Acanthoscurria geniculata (Mygalomorphae). We annotate genes using a combination of transcriptomic and in-depth proteomic analyses. The genomes are large (2.6 Gb and 6 Gb, respectively) with short exons and long introns and approximately 50% repeats, reminiscent of typical mammalian genomes. Phylogenetic analyses show that spiders and ticks are sister groups outgrouped by mites, and phylogenetic dating using a molecular clock dates separation of velvet spider and tarantula at 270 my. Based on the genomes and proteomes, we characterize the genetic basis of venom and silk production of both species in detail. Venom protein composition differs markedly between the two spiders, with lipases as the most abundant protein in the velvet spider and present only at low concentration in tarantula. Venom in both spiders contains proteolytic enzymes, and our analyses suggest that these enzymes target and process precursor peptides that subsequently mediate the toxic effects of venom. Complete analysis of silk genes reveal a diverse suite of silk proteins in the velvet spider including novel types of spidroins, and dynamic evolution of major ampullate spidroin genes, whereas silk protein diversity in tarantula is far less complex. The difference in silk proteins between species is consistent with a more complex silk gland morpholgy and use of three-dimentional capture webs consisting of multiple silk types in aranomorph spiders.
Project description:The spider venom-derived peptide GsMTx4 specifically inhibits mechanosensory ion channels. It has been reported that GsMTx4 plays an immunoregulatory role in several inflammatory conditions. Therefore, we administrated GsMTx4 to mice with dextran sodium sulfate (DSS)-induced acute colitis, to explore whether it regulates inflammatory responses in colitis.
Project description:Prey-specialised spiders are adapted to capture specific prey items, including dangerous prey such as ants, termites or other spiders. It has been observed that the venoms of specialists are often prey-specific and less complex than those of generalists, but venom composition has not been studied in detail in prey-specialised spiders. Here, we investigated the venom of the prey-specialised white-tailed spider (Lamponidae: Lampona sp.), which utilises specialised morphological and behavioural adaptations to capture spider prey. We hypothesised Lampona spiders also possess venomic adaptations, specifically, its venom is more effective to focal spider prey due to the presence of prey-specific toxins. We analysed the venom composition using proteo-transcriptomics and taxon-specific toxicity using venom bioassays. Our analysis identified 208 putative toxin sequences, comprising 103 peptides <10 kDa and 105 proteins >10 kDa. Most peptides belonged to one of two families characterised by scaffolds containing eight or ten cysteine residues. Protein toxins showed similarity to galectins, leucine-rich repeat proteins, trypsins and neprilysins. The venom of Lampona was shown to be spider-specific, as it was more potent against the preferred spider prey than against alternative prey represented by a cricket. In contrast, the venom of a related generalist (Gnaphosidae: Gnaphosa sp.) was similarly potent against both prey types. Prey-specific Lampona toxins were found to form part of the protein (>10 kDa) fraction of the venom. These data provide insights into the molecular adaptations of venoms produced by prey-specialised spiders.
Project description:Acanthoscurria juruenicola is an Amazonian tarantula spider described for the first time a century ago. Specimens of both genders are similar in size and in most morphological aspects, but ecological behavior and their venom composition remained unknown to date. Here we present the trascriptomics, proteomics and peptidomics characterization of the spider venom by a combination of mass spectrometric analysis of both native and digested peptides, venom gland transcriptomics and bioinformatics.