Project description:A type strain of Lactarius deliciosus was obtained from the CBS-KNAW culture collection. The mycelium was cultured using potato dextrose agar, and the extracted genomic DNA was subjected to PacBio genome sequencing. Upon assembly and annotation, the genome size was estimated to be 54 Mbp, with 12,753 genes.
Project description:This data was generated by ENCODE. If you have questions about the data, contact the submitting laboratory directly (Florencia Pauli mailto:fpauli@hudsonalpha.org). If you have questions about the Genome Browser track associated with this data, contact ENCODE (mailto:genome@soe.ucsc.edu). This track is produced as part of the ENCODE project. The track displays copy number variation (CNV) as determined by the Illumina Human 1M-Duo Infinium HD BeadChip assay and circular binary segmentation (CBS). The Human 1M-Duo contains more than 1,100,000 tagSNP markers and a set of ~60,000 additional CNV-targeted markers. The median spacing between markers is 1.5 kb and the mean spacing is 2.4 kb. The B-allele frequency and genotyping single nucleotide polymorphism (SNP) data generated by the experiment are not displayed, but are available for download from the Downloads page. Where applicable, biological replicates of each cell line are reported separately. Possible uses of the data include correction of copy number in peak-calling for ChIP-seq, transcriptome, DNase hypersensitivity, and methylation determinations. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf
Project description:The present study computes the Lie symmetries and exact solutions of some problems modeled by nonlinear partial differential equations. The (1 + 1)-dimensional integro-differential Ito, the first integro-differential KP hierarchy, the Calogero-Bogoyavlenskii-Schiff (CBS), the modified Calogero-Bogoyavlenskii-Schiff (CBS), and the modified KdV-CBS equations are some of the problems for which we want to find new exact solutions. We employ similarity variables to reduce the number of independent variables and inverse similarity transformations to obtain exact solutions to the equations under consideration. The sine-cosine method is then utilized to determine the exact solutions.
Project description:Phytate (myo-inositol hexakisphosphate) is the primary storage form of phosphate in seeds and legumes (Reddy et al., 1982). Phytases are phosphatases that hydrolyze phytate to less phosphorylated myo-inositol derivatives and inorganic phosphate. The crystal structure of phytase from Debaryomyces castellii has been determined at 2.3 A resolution. The crystals belonged to space group P6(5)22, with unit-cell parameters a = 121.65, c = 332.24 A. The structure was solved by molecular replacement and refined to a final R factor of 15.7% (R(free) = 20.9%). The final model consists of a dimer (with two monomers of 458 residues), five NAG molecules and 628 water molecules.
Project description:The various strains of Scheffersomyces stipitis (Pichia stipitis) differ substantially with respect to their ability to ferment xylose into ethanol. Two P. stipitis strains CBS 5773 and CBS 6054 have been most often used in literature but comparison of their performance in xylose fermentation under identical conditions has not been reported so far. Conversion of xylose (22 g/L) by each of these P. stipitis strain was analyzed under anaerobic and microaerobic conditions. Ethanol yields of ∼0.41 g/g were independent of strain and conditions used. Glycerol and acetate were formed in constant yields of 0.006 g/g and 0.02 g/g, respectively. Xylitol formation decreased from ∼0.08 g/g to ∼0.05 g/g upon switch from anaerobic to microaerobic conditions. Specific activities of enzymes of the two-step oxidoreductive xylose conversion pathway (xylose reductase and xylitol dehydrogenase) matched for both strains within limits of error. When xylose was offered at 76 g/L under microaerobic reaction conditions, ethanol yields were still high (0.37-0.39 g/g) for both strains even though the xylitol yields (0.12-0.13 g/g) were increased as compared to the conditions of low xylose concentration. P. stipitis strains CBS 5773 and CBS 6054 are therefore identical by the criteria selected and show useful performance during conversion of xylose into ethanol, irrespective of the supply of oxygen.