Project description:The vascular tree has considerable diversity, with discrete regions having different physiologic characteristics and permeability. Of note are venules that are significantly more sensitive to pro-inflammatory cytokines than arterioles. We used microarrays to identify molecular signatures that distinguish primary human venous endothelial cells from arterial endothelial cells. We used microarrays to identify genes differentially expressed by venous vs arterial human endothelial cells.
Project description:Intra- and extracellular metabolomics dataset of human dermal blood endothelial cells (HDBECs), human umbilical vein endothelial cells (HUVECs), human dermal lymphatic endothelial cells (HDLECs) and intestinal lymphatic endothelial cells (iLECs) in proliferation and quiescence.
Project description:Oxidoreductase enzymes are critical to redox regulation of intracellular proteins within human cells. We used microarrays to identify which oxidreducatse genes are expressed in unstimulated human umbilical vein endothelial cells. Human umbilical vein endothelial cells were grown under optimal conditions and then RNA extracted and hybridized on Affymetrix microarrays.
Project description:We profiled global gene expression in primary human umbilical vein endothelial cells to determine the gene expression changes associated with knocking down PKM2 and p53. We identified a p53 dependent transcriptional response that remodels metabolism in cells lacking p53, thus limiting cell growth. Human Umbilical Vein Endothelial Cells were transfected with siRNA duplexes targeting PKM2 and / or p53, RNA was extracted and subjected to RNA sequencing