Project description:Understanding the genetic basis of adaptation to novel environments remains one of the major challenges confronting evolutionary biologists. While newly developed genomic approaches hold considerable promise for addressing this overall question, the relevant tools have not often been available in the most ecologically interesting organisms. Our study organism, Drosophila mojavensis, is a cactophilic Sonoran Desert endemic utilizing four different cactus hosts across its geographic range. Its well-known ecology makes it an attractive system in which to study the evolution of gene expression during adaptation. As a cactophile, D. mojavensis oviposits in the necrotic tissues of cacti, therefore exposing larvae and even adults to the varied and toxic compounds of rotting cacti. We have developed a cDNA microarray of D. mojavensis to examine gene expression associated with cactus host use. Using a population from the Baja California population we examined gene expression differences of third instar larvae when reared in two chemically distinct cactus hosts, agria (Stenocereus gummosus, native host) vs. organpipe (S. thurberi, alternative host). We have observed differential gene expression associated with cactus host use in genes involved in metabolism and detoxification. Keywords: host adaptation, stress response, detoxification
2007-01-24 | GSE5148 | GEO
Project description:Phylogenomics and biogeography of seven cacti genera
Project description:Understanding the genetic basis of adaptation to novel environments remains one of the major challenges confronting evolutionary biologists. While newly developed genomic approaches hold considerable promise for addressing this overall question, the relevant tools have not often been available in the most ecologically interesting organisms. Our study organism, Drosophila mojavensis, is a cactophilic Sonoran Desert endemic utilizing four different cactus hosts across its geographic range. Its well-known ecology makes it an attractive system in which to study the evolution of gene expression during adaptation. As a cactophile, D. mojavensis oviposits in the necrotic tissues of cacti, therefore exposing larvae and even adults to the varied and toxic compounds of rotting cacti. We have developed a cDNA microarray of D. mojavensis to examine gene expression associated with cactus host use. Using a population from the Baja California population we examined gene expression differences of third instar larvae when reared in two chemically distinct cactus hosts, agria (Stenocereus gummosus, native host) vs. organpipe (S. thurberi, alternative host). We have observed differential gene expression associated with cactus host use in genes involved in metabolism and detoxification. The experiment was composed of 5 sets of dye-flips (rep1-5). Larvae were reared in either necrotic agria or organpipe cactus tissues. They were then collected at the third instar stage and its total RNA extracted.
Project description:This SuperSeries is composed of the following subset Series: GSE35462: Genome-wide analysis of histone methylation reveals chromatin state-based regulation of host cellular gene expression induced by hepatitis B viruses (ChIP-Seq dataset) GSE35464: Genome-wide analysis of histone methylation reveals chromatin state-based regulation of host cellular gene expression induced by hepatitis B viruses (DGE dataset) Refer to individual Series
Project description:We report a global survey of viral small RNAs (vsmRNAs) from >200 Aedes aegypti samples to identify many mosquito viruses that actively infect this prominent arboviral vector. Ae. aegypti viruses in the Americas were abundant, with some displaying geographical boundaries. Viruses infecting Asian Ae. aegypti were similar to those in the Americas and revealed the first wild example of dengue vsmRNAs. African Ae. aegypti displayed vsmRNAs from viruses unique to these African strains. Academic lab colonies generally lacked viruses, yet two commercial strains were deeply infected by a tombus-like virus that is related to plant viruses. Comparing matched viral long RNAs to vsmRNAs revealed viral transcripts evading the mosquito RNA interference (RNAi) pathway. By infecting mosquito cells with Ae. aegypti homogenates, we generated stably infected cell lines which produced vsmRNAs that were comparable to native mosquito vsmRNA patterns. Lastly, we demonstrate that these stably infected mosquito cells producing vsmRNAs can exert gene silencing of reporters bearing viral sequence segments, providing a potential explanation for how Ae. aegypti can tolerate the persistence of viral infections. This vsmRNA genomics approach in Ae. aegypti can add to existing vector surveillance approaches by discovering new viruses that persist in mosquito populations.
Project description:The RNA interference (RNAi) pathway is found in most eukaryotic lineages but curiously is absent in others, including that of Saccharomyces cerevisiae. Here, we show that reconstituting RNAi in S. cerevisiae causes loss of a beneficial dsRNA virus, known as killer virus. Incompatibility between RNAi and killer viruses extends to other fungal species, in that RNAi is absent in all species known to possess dsRNA killer viruses, whereas killer viruses are absent in closely related species that retained RNAi. Thus, the advantage imparted by acquiring and retaining killer viruses explains the persistence of RNAi-deficient species during fungal evolution.
Project description:In recent years, the roles of microRNAs playing in the regulation of influenza viruses replication caused researchers' much attenion. However, much work focused on the interactions between human, mice or chicken microRNAs with human or avian influenza viruses rather than the interactions of swine microRNAs and swine influenza viruses. To investigate the roles of swine microRNAs playing in the regulation of swine influenza A virus replication, the microRNA microarray was performed to identify which swine microRNAs were involved in swine H1N1/2009 influenza A virus infection.