Project description:Gene content in various Enterococcus faecalis strains compared to E. faecalis V583. Strains have been compared to the V583 strain by comparative genomic hybridization using genome-wide PCR-based microarrays representing the V583 genome. Genes have been deemed "present" or "divergent" in the various strains.
Project description:In this study the transcriptomes of Acinetobacter baumannii strains ATCC 17978 and 17978hm were compared. Strain 17978hm is a hns knockout derivative of strain ATCC 17978. Strain 17978hm displays a hyper-motile phenotype on semi-solid Mueller-Hinton (MH) media (0.25% agar). ATCC 17978 and 17978hm from an 37C overnight culture were transferred to the centre of the semi-solid MH plate and incubated at 37C for 8 hours. Only 17978hm cells displayed a motile phenotype and covered the complete surface of the plate. These motile 17978hm cells and the non-motile wild-type ATCC 17978 cells were harvested and RNA was isolated. The comparative transcriptome analysis was performed using the FairPlay labeling kit and a custom made Agilent MicroArray with probes designed to coding regions of the ATCC 17978 genome. The data was analyzed using Agilent GeneSpring GX9 and the significance analysis of microarray MS Excel add-on.
Project description:To explain the particular behavior of the mutant ΔBac strain and the impact of the bacteriocin DD14 on the global regulation and gene expression in Ent. faecalis 14, we performed a comparative transciptomic analysis of RNA isolated from a derivative strain ΔBac mutant versus the wild-type (WT) , after 6 h of growth in GM17 medium under semi-aerobic conditions.
Project description:Comparative genomic hybridization of 9 Norwegian E. faecalis baby isolates with E. faecalis V583 as a reference strain using an E. faecalis V583 oligo array. Total gene content was analyzed by whole genome microarrays.
Project description:Transcriptional profiling of E. faecalis E99 WT and an isogenic ΔperA strain grown in THB + 1% glucose. Pathogenic E. faecalis are enriched for a pathogenicity island (PAI). This 150-kb island harbors a number of well characterized virulence genes plus a number of determinants of unknown function including one encoding a transcriptional regulator, designated PerA. In this work, we show that PerA coordinately regulates both metabolic and virulence genes, and influences the platelet binding ability of E. faecalis. Finally, we show that PerA responds to bicarbonate, an intestinal ion frequently used by pathogens to determine the site of infection. Together, these results indicate that PerA is a global transcriptional regulator that coordinately regulates genes responsible for enterococcal pathogenicity. These findings highlight a novel feature of PAI-mediated virulence regulation, namely the coordinate regulation of metabolic and virulence factors in the core genome by a horizontally acquired PAI-encoded transcriptional regulator.
Project description:To further investigate the homeostatic response of E. faecalis to Fe exposure, we examine the whole-genome transcriptional response of wild-type (WT) exposed to non toxic Fe excess. This experiment correspond the work titled Transcriptomic response of Enterococcus faecalis to iron excess (work in preparation) A four chip study using total RNA recovered from four separate wild-type cultures of Enterococcus faecalis OG1RF, two controls samples (N medium growth) and two iron samples (N medium gowth with 0.5 mM Fe-NTA). Each chip measures the expression level of 3,114 genome genes from Enterococcus faecalis strain V583 (A7980-00-01).
Project description:In this study the transcriptomes of Acinetobacter baumannii strains ATCC 17978 and 17978hm were compared. Strain 17978hm is a hns knockout derivative of strain ATCC 17978. Strain 17978hm displays a hyper-motile phenotype on semi-solid Mueller-Hinton (MH) media (0.25% agar). ATCC 17978 and 17978hm from an 37C overnight culture were transferred to the centre of the semi-solid MH plate and incubated at 37C for 8 hours. Only 17978hm cells displayed a motile phenotype and covered the complete surface of the plate. These motile 17978hm cells and the non-motile wild-type ATCC 17978 cells were harvested and RNA was isolated. The comparative transcriptome analysis was performed using the FairPlay labeling kit and a custom made Agilent MicroArray with probes designed to coding regions of the ATCC 17978 genome. The data was analyzed using Agilent GeneSpring GX9 and the significance analysis of microarray MS Excel add-on. The motile 17978hm cells and the non-motile wild-type ATCC 17978 cells were harvested and RNA was isolated. The comparative transcriptome analysis was performedThe probes on the microarray cover all predicted open reading frames (at least 4 per ORF) and additional replicates of housekeeping genes of the A. baumannii ATCC 17978 genome .