Project description:Genome-wide expression profiling of four kinds of body fluid samples (blood, saliva, semen and vaginal swab). The purpose of the present study was selection of specific mRNA markers for identification of the four body fluids. Results provide important information about gene expression level of each body fluid for forensic science. Total RNAs isolated from four kinds of body fluid samples (blood, saliva, semen and vaginal swab) obtained from Korean volunteers
Project description:Clinical treatment protocols for infertility with in vitro fertilization-embryo transfer (IVF-ET) provide a unique opportunity to assess the human vaginal microbiome in defined hormonal milieu. Herein, we have investigated the association of circulating ovarian-derived estradiol (E2) and progesterone (P4) concentrations to the vaginal microbiome. Thirty IVF-ET patients were enrolled in this study, after informed consent. Blood was drawn at four time points during the IVF-ET procedure. In addition, if a pregnancy resulted, blood was drawn at 4-to-6 weeks of gestation. The serum concentrations of E2 and P4 were measured. Vaginal swabs were obtained in different hormonal milieu. Two independent genome-based technologies (and the second assayed in two different ways) were employed to identify the vaginal microbes. The vaginal microbiome underwent a transition with a decrease in E2 (and/or a decrease in P4). Novel bacteria were found in the vagina of 33% of the women undergoing IVF-ET. Our approach has enabled the discovery of novel, previously unidentified bacterial species in the human vagina in different hormonal milieu. While the relationship of hormone concentration and vaginal microbes was found to be complex, the data support a shift in the microbiome of the human vagina during IVF-ET therapy using standard protocols. The data also set the foundation for further studies examining correlations between IVF-ET outcome and the vaginal microbiome within a larger study population.
Project description:The objectives of this study were to establish a microbiome profile for oral epithelial dysplasia using archival lesion swab samples to characterize the community variations and the functional potential of the microbiome using 16S rRNA gene sequencing
Project description:<p>The pregnancy vaginal microbiome contributes to risk of preterm birth, the primary cause of death in children under 5 years of age. Here we describe direct on-swab metabolic profiling by Desorption Electrospray Ionization Mass Spectrometry (DESI-MS) for sample preparation-free characterisation of the cervicovaginal metabolome in two independent pregnancy cohorts (VMET, n = 160; 455 swabs; VMET II, n = 205; 573 swabs). By integrating metataxonomics and immune profiling data from matched samples, we show that specific metabolome signatures can be used to robustly predict simultaneously both the composition of the vaginal microbiome and host inflammatory status. In these patients, vaginal microbiota instability and innate immune activation, as predicted using DESI-MS, associated with preterm birth, including in women receiving cervical cerclage for preterm birth prevention. These findings highlight direct on-swab metabolic profiling by DESI-MS as an innovative approach for preterm birth risk stratification through rapid assessment of vaginal microbiota-host dynamics.</p><p><br></p><p><strong>Linked cross omic data sets:</strong></p><p>Meta-taxonomics data associated with this study are available in the European Nucleotide Archive (ENA): accession number <a href='https://www.ebi.ac.uk/ena/browser/view/PRJEB11895' rel='noopener noreferrer' target='_blank'>PRJEB11895</a>, <a href='https://www.ebi.ac.uk/ena/browser/view/PRJEB12577' rel='noopener noreferrer' target='_blank'>PRJEB12577</a> and <a href='https://www.ebi.ac.uk/ena/browser/view/PRJEB41427' rel='noopener noreferrer' target='_blank'>PRJEB41427</a>.</p>
Project description:Genome-wide expression profiling of four kinds of body fluid samples (blood, saliva, semen and vaginal swab). The purpose of the present study was selection of specific mRNA markers for identification of the four body fluids. Results provide important information about gene expression level of each body fluid for forensic science.