Project description:Sewage microbial communities from Oakland, California, United States - Biofuel Metagenome 10
| PRJNA593593 | ENA
Project description:EMG produced TPA metagenomics assembly of PRJNA593594 data set (Sewage microbial communities from Oakland, California, United States - Biofuel Metagenome 11).
| PRJEB45727 | ENA
Project description:EMG produced TPA metagenomics assembly of PRJNA593593 data set (Sewage microbial communities from Oakland, California, United States - Biofuel Metagenome 10).
Project description:Hornyhead turbot (Pleuronichthys verticalis) captured near sewage outfalls are used as sentinel fish for monitoring exposure to industrial and agricultural chemicals of ~20 million people living in coastal southern California. Although analyses of hormones in blood and organ morphology and histology in fish are useful for assessing exposure, there is a need for quantitative and sensitive molecular measurements, as many contaminants produce subtle effects. A novel multispecies microarray and qRT-PCR were used to investigate endocrine disruption in turbot captured near sewage outfalls in San Diego, Orange County and Los Angeles California. Analysis of expression of genes involved in hormone [e.g. estrogen, androgen, thyroid] responses and xenobiotic metabolism in turbot livers was correlated with phenotypic end points.
Project description:For expression analysis of wild-type V. cholerae, hapR, and rpoS deletion mutants in mid-exponential or stationary phase, the strains were grown to either OD600 of 0.3 or for 11 h in LB media at 37 0C, and bacteria from 2-ml culture were quickly pelleted, resuspended in Trizol reagent (GIBCO/BRL, San Diego, California, United States), and frozen on dry ice. RNA was isolated from the Trizol agent, treated with DNaseI (Ambion, Austin, Texas, United States), and cleaned by using the RNeasy kit (Qiagen, Valencia, California, United States). Labeling of cDNA and microarray hybridizations were performed as described [Yiliz et al. 2001, Mol. Micro. 53: 497-515]. Microarrays were scanned with a GenePix 400A instrument (Axon Instruments), using the GENEPIX 5.0 software. At least four microarray experiments were performed for each of two biological replicates for the tested strains. Gene expression of V. cholerae, rpoS, and hapR deletion mutants in stationary phase LB cultures was analyzed and compared to the wild-type parent under identical conditions. Gene expression of the wild-type parent during stationary phase after 11 h growth in LB was analyzed using RNA from an exponentially growing culture as a reference.
Project description:For expression analysis of wild-type V. cholerae, hapR, and rpoS deletion mutants in mid-exponential or stationary phase, the strains were grown to either OD600 of 0.3 or for 11 h in LB media at 37 0C, and bacteria from 2-ml culture were quickly pelleted, resuspended in Trizol reagent (GIBCO/BRL, San Diego, California, United States), and frozen on dry ice. RNA was isolated from the Trizol agent, treated with DNaseI (Ambion, Austin, Texas, United States), and cleaned by using the RNeasy kit (Qiagen, Valencia, California, United States). Labeling of cDNA and microarray hybridizations were performed as described [Yiliz et al. 2001, Mol. Micro. 53: 497-515]. Microarrays were scanned with a GenePix 400A instrument (Axon Instruments), using the GENEPIX 5.0 software. At least four microarray experiments were performed for each of two biological replicates for the tested strains. Gene expression of V. cholerae, rpoS, and hapR deletion mutants in stationary phase LB cultures was analyzed and compared to the wild-type parent under identical conditions. Gene expression of the wild-type parent during stationary phase after 11 h growth in LB was analyzed using RNA from an exponentially growing culture as a reference. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Keywords: Logical Set
Project description:We developed a laboratory-scale model to improve our understanding and capacity to assess the biological risks of genetically engineered bacteria and their genetic elements in the natural environment. Our hypothetical scenario concerns an industrial bioreactor failure resulting in the introduction of genetically engineered bacteria to a downstream municipal wastewater treatment plant (MWWTP). As the first step towards developing a model for this scenario, we sampled microbial communities from the aeration basin of a MWWTP at three seasonal time points. Having established a baseline for community composition, we investigated how the community changed when propagated in the laboratory, including cell culture media conditions that could provide selective pressure in future studies. Specifically, using PhyloChip 16S rRNA gene-targeting microarrays, we compared the compositions of sampled communities to those of inoculates propagated in the laboratory in simulated wastewater conditionally amended with various carbon sources (glucose, chloroacetate, D-threonine) or the ionic liquid 1-ethyl-3-methylimidazolium chloride ([C2mim]Cl). Proteobacteria, Bacteroidetes, and Actinobacteria were predominant in aeration basin and laboratory-cultured populations. Laboratory-cultured populations were enriched in Gammaproteobacteria. Enterobacteriaceae and Aeromonadaceae were enriched by glucose, Pseudomonadaceae by chloroacetate and D-threonine, and Burkholderiaceae by high (50 mM) concentrations of chloroacetate. Microbial populations cultured with chloroacetate and D-threonine were more similar to sampled populations than thoes cultured with glucose or [C2mim]Cl. Although observed relative richness in operational taxonomic units was lower for laboratory cultures than for sampled populations, both flask and reactor systems cultured phylogenetically diverse communities. These results importantly provide a foundation for laboratory models of industrial bioreactor failure scenarios.
Project description:We developed a laboratory-scale model to improve our understanding and capacity to assess the biological risks of genetically engineered bacteria and their genetic elements in the natural environment. Our hypothetical scenario concerns an industrial bioreactor failure resulting in the introduction of genetically engineered bacteria to a downstream municipal wastewater treatment plant (MWWTP). As the first step towards developing a model for this scenario, we sampled microbial communities from the aeration basin of a MWWTP at three seasonal time points. Having established a baseline for community composition, we investigated how the community changed when propagated in the laboratory, including cell culture media conditions that could provide selective pressure in future studies. Specifically, using PhyloChip 16S rRNA gene-targeting microarrays, we compared the compositions of sampled communities to those of inoculates propagated in the laboratory in simulated wastewater conditionally amended with various carbon sources (glucose, chloroacetate, D-threonine) or the ionic liquid 1-ethyl-3-methylimidazolium chloride ([C2mim]Cl). Proteobacteria, Bacteroidetes, and Actinobacteria were predominant in aeration basin and laboratory-cultured populations. Laboratory-cultured populations were enriched in Gammaproteobacteria. Enterobacteriaceae and Aeromonadaceae were enriched by glucose, Pseudomonadaceae by chloroacetate and D-threonine, and Burkholderiaceae by high (50 mM) concentrations of chloroacetate. Microbial populations cultured with chloroacetate and D-threonine were more similar to sampled populations than thoes cultured with glucose or [C2mim]Cl. Although observed relative richness in operational taxonomic units was lower for laboratory cultures than for sampled populations, both flask and reactor systems cultured phylogenetically diverse communities. These results importantly provide a foundation for laboratory models of industrial bioreactor failure scenarios. 46 samples, flask and reactor experiments were conducted in triplicate with two exceptions: [C2mim]Cl_flask and No-Carbon_flask treatments had only one sample (no replicates).