Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:This project is a proteomic comparison of Hyphomicrobium sp. MC8b grown with dichloromethane or with methanol. The datasets were obtained using the annotated genome of Hyphomicrobium sp. MC8b.
Project description:Comprehensive RNA-seq experiments to measure the expression of homoeologs across different tissues, as a part of the Xenopus laevis genome project. This work is funded by Agency Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT; "Genome Science" Grant ID 221S0002).
Project description:Comprehensive RNA-seq experiments to measure the expression of homoeologs across different developmental stages, as a part of the Xenopus laevis genome project. This work is funded by Agency Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT; "Genome Science" Grant ID 221S0002).
Project description:The Sc2.0 project is building a eukaryotic synthetic genome from scratch. A major milestone has been achieved with all individual Sc2.0 chromosomes assembled. Here, we describe consolidation of multiple synthetic chromosomes using advanced endoreduplication intercrossing with tRNA expression cassettes to generate a strain with 6.5 synthetic chromosomes. The 3D chromosome organization and transcript isoform profiles were evaluated using Hi-C and long-read direct RNA sequencing. We developed CRISPR Directed Biallelic URA3-assisted Genome Scan, or “CRISPR D-BUGS”, to map phenotypic variants caused by specific designer modifications, known as “bugs”. We first fine-mapped a bug in synthetic chromosome II (synII), and then discovered a combinatorial interaction associated with synIII and synX, revealing an unexpected genetic interaction that links transcriptional regulation, inositol metabolism and tRNASerCGA abundance. Finally, to expedite consolidation, we employed chromosome substitution to incorporate the largest chromosome (synIV), thereby consolidating >50% of the Sc2.0 genome in one strain.
Project description:This project is a proteomic comparison of Microbacterium sp. Viu2A exposed to 10 µM nitrate uranyl versus control condition without uranyl. Three sampling time points (30 min, 4h and 24h) were analyzed. The proteomics datasets were obtained using a protein database derived from the Microbacterium sp. Viu2A complete genome.
Project description:This project is a proteomic comparison of Microbacterium lemovicicum Viu22 exposed to 10 µM nitrate uranyl versus control condition without uranyl. Three sampling time points (30 min, 4h and 24h) were analyzed. The proteomics datasets were obtained using a protein database derived from the Microbacterium lemovicicum Viu22 complete genome.