Project description:Sugarcane stalk borer larvae were grown on artificial diet and maintained at 25°C and 60±10% relative humidity with a 14 h/10 h light/dark cycle. Second instar larvae were maintained under fasting conditions for 18 h and transferred to two-month old plants (genotype SP80-3280, CTC, Brazil). Leaves were collected after 30 min and 24 h of exposure to herbivory for the control and experimental groups. Two plantlets were used for each time point. Extraction of total RNA was performed separately on each sample pool. Keywords: time course of stress response
Project description:We investigate the functional complexity of the Plutella xylostella transcriptome in defending against a Bt toxin using Illumina sequencing technology. Over 2,900 differentially expressed unigenes were obtained in resistant P. xylostella comparison to their susceptible counterpart. All the P. xylostella were maintained on cabbage.The susceptible strain (MM) was cultured without exposure to any Bt toxins.Before the sample collected, Cry1Ac-resistant P. xylostella were treated with 750μg/mL Bt toxin Cry1Ac to eliminate the heterozygous individuals. Then the survivors were collected after 48 hours and designed as the resistant sample (MK and GK). Then fourth-instars larvae midgut tissues of MK,GK and MM were collected, respectively, The RNA was extracted and sequenced using Illunima HiSeq 2000.
Project description:Diatraea saccharalis (Fabricius, 1794) (Lepidoptera: Crambidae), the sugarcane borer, spends most of its life cycle inside the galleries it burrows into sugarcane stalk, where two rot-causing fungi Colletotrichum falcatum (Went, 1893) and Fusarium verticillioides (Nirenberg, 1976) are commonly found. Results have shown that microbiota harbored by D. saccharalis inhibits the growth of F. verticillioides and C. falcatum. D. saccharalis larvae were collected from chemical-free field plants, and yeast and bacteria from third and fourth-instar D. saccharalis regurgitate were isolated onto appropriate media. The percentage of F. verticillioides and C. falcatum mycelial growth inhibition was recorded. Out of 32 yeast isolates, 9 exerted 30 to 40% growth inhibition of C. falcatum or F. verticillioides. When 24 bacterial isolates were confronted with rot-causing fungi, six inhibited C. falcatum growth by 30 to 60%, and 24 isolates inhibited 30 to 60% of F. verticillioides growth. Bacteria and yeast isolates were identified through DNA sequencing of part of 16S rDNA and part of ITS1-5.8S-ITS2, respectively, revealing an abundance of isolates with sequence similarity to Klebsiella and Bacillus and Meyerozyma, which have been used as biological control agents and their ability to promote plant growth has been demonstrated. We have shown that microorganisms from borer regurgitate inhibit phytopathogen growth in vitro. Still, further investigation of the possible functions of D. saccharalis-associated microorganisms may help understand their ecological role in plant-insect-phytopathogen interaction.