Project description:Monitoring microbial communities can aid in understanding the state of these habitats. Environmental DNA (eDNA) techniques provide efficient and comprehensive monitoring by capturing broader diversity. Besides structural profiling, eDNA methods allow the study of functional profiles, encompassing the genes within the microbial community. In this study, three methodologies were compared for functional profiling of microbial communities in estuarine and coastal sites in the Bay of Biscay. The methodologies included inference from 16S metabarcoding data using Tax4Fun, GeoChip microarrays, and shotgun metagenomics.
Project description:Although N2 fixation can occur in free-living cyanobacteria, the unicellular endosymbiotic cyanobacterium Candidatus Atelocyanobacterium thalassa (UCYN-A) is considered to be a dominant N2-fixing species in marine ecosystems. Four UCYN-A sublineages are known from partial nitrogenase (nifH) gene sequences. However, few studies have investigated their habitat preferences and regulation by their respective hosts in open-ocean versus coastal environments. Here, we compared UCYN-A transcriptomes from oligotrophic open-ocean versus nutrient-rich coastal waters. UCYN-A1 metabolism was more impacted by habitat changes than UCYN-A2. However, across habitats and sublineages genes for nitrogen fixation and energy production were highly transcribed. Curiously these genes, critical to the symbiosis for the exchange of fixed nitrogen for fixed carbon, maintained the same schedule of diel expression across habitats and UCYN-A sublineages, including UCYN-A3 in the open-ocean transcriptomes. Our results undersore the importance of nitrogen fixation in UCYN-A symbioses across habitats, with consequences for community interaction and global biogeochemical cycles.
Project description:An Autonomous Underwater Vehicle (AUV) and large volume underwater pumps were used to collect microbial biomass from offshore waters of the Sargasso Sea, from surface waters and into the deep ocean. Seawater collection was performed along a transect in the western North Atlantic Ocean beginning near Bermuda and ending off the coast of Massachusetts, capturing metabolic signatures from oligotrophic, continental margin, and productive coastal ecosystems.
Project description:The European clam, Ruditapes decussatus (Linnaeus, 1758) is a bivalve mollusc of the family Veneridae native to the European Atlantic and Mediterranean coastal waters. Its production is exclusively based on natural recruitment, which is subject to high annual fluctuations due to adversely affected by pollution and other environmental factors. Microarray analyses have been performed in four gonadal maturation stages of two higly productive Portuguese wild populations (Ria Formosa in South and Ria de Aveiro in North) characterized by different responses to spawning induction.
Project description:Atrazine is one of the most commonly used herbicide and has been frequently detected in estuarine and offshore waters worldwide. As a photosystem Ⅱ inhibitor, atrazine may inhibit phytoplankton from fixating of CO2 and alter its carbon metabolism, which will undoubtedly have negative effect on the primary productivity and carbon sequestration capacity of coastal waters. However, the existing reports mainly focused on agriculture and freshwater ecosystems and are mostly toxicity test with high-dose of atrazine, which have little concern about the negative effects of atrazine on the carbon metabolism of phytoplankton and can’t reflect the actual toxic situation in offshore water. Diatoms are widely distributed in freshwater and oceans and contribute at least 20% of the global CO2 assimilation, which is an ideal model group to assess the ecological risk of atrazine. Here we present a comprehensive analysis of the physiological and genome-wide gene expression characteristics of the diatom P. tricornutum Pt-1 (CCMP 2561) treated with environmental dose of atrazine at different stress stages.
Project description:The project is aimed at the identification of conotoxins and conopeptides from the venom of marine cone snails found in the Indian coastal waters. Peptides of novel sequences will be further characterized in terms of structural and physico-chemical properties by NMR spectroscopy and other biophysical methods and will be studied for the abilities to elicit pharmacological responses against cellular targets.