Project description:The Human leukocyte antigen (HLA) -region, especially HLA class I and II genes, plays a major role in the predisposition to autoimmune disorders. Particularly three HLA haplotypes, DRB1*03-DQA1*05-DQB1*02 (DR3-DQ2), DRB1*04:01-DQA1*03-DQB1*03:02 (DR4-DQ8) and DRB1*15-DQA1*01-DQB1*06:02 (DR2-DQ6), have an important role in many autoimmune diseases: for example, in type 1 diabetes (T1D) the DR2-DQ6 is associated with a strongly decreased T1D risk and the DR3-DQ2 and DR4-DQ8 are associated with a moderately increased T1D risk. To clarify the mechanisms behind this association, we examined genome-wide DNA methylation in CD4+ T cells and CD19+ B cells of healthy subjects homozygous either for DR3-DQ2 (n = 19), DR4-DQ8 (n = 17) or DR2-DQ6 (n = 14), and compared methylation between the genotypes. For the study, CD4+ T cells and CD19+ B cells were isolated consecutively from PBMC samples using magnetic bead separation. DNA was extracted from the cell lysates with AllPrep DNA/RNA/miRNA Universal Kit (Qiagen, Germany). Then the individual DNA samples were pooled into 11 pooled samples with 4–5 samples per pooled sample. The original 50 samples were designated pools based on age and sex to ensure that the age and sex distributions would be as similar as possible between the pooled samples. The mean age (±SD) in the three HLA-groups (DR2-DQ6, DR3-DQ2 and DR4-DQ8) were 15.0 (±8.3), 11.1 (±5.6) and 11.8 (±7.9) and their male to female ratios were 8/6, 9/10 and 11/6. Similar pooled samples were created for both the CD4+ T cell and the CD19+ B cell samples. Then DNA methylation was examined in the pooled CD4+ T cell and CD19+ B cell samples using Illumina Infinium HumanMethylation EPIC beadchip.
Project description:Somatic mutations in cancer are a potential source of cancer specific neoantigens. Acute myeloid leukemia (AML) has common recurrent mutations shared between patients in addition to private mutations specific to individuals. We hypothesized that neoantigens derived from recurrent shared mutations would be attractive targets for future immunotherapy and sought to study the Class I and II HLA ligandomes of thirteen primary AML tumor samples and two AML cell lines (OCI-AML3 and MV4-11) using mass spectrometry. We identified two endogenous, mutation-bearing HLA Class I ligands from NPM1, which are predicted to bind the common HLA haplotypes, HLA-A*03:01 and HLA-A*02:01 respectively. We further derived CD8+ T cells from healthy donor peripheral blood samples which bound mutant-peptide loaded A*03:01 and A*02:01 tetramers, suggesting a new source of NPM1 mutation-specific T cell receptors (TCRs) for future evaluation. Since NPM1 is mutated in approximately one-third of patients with AML, the finding of endogenous NPM1 neoantigens supports future studies evaluating immunotherapeutic approaches against this target, for this subset of patients with AML.
Project description:Several HLA allelic variants have been associated with protection from, or susceptibility to infectious and autoimmune diseases. Here, we examined whether specific HLA alleles would be associated with different Mtb infection outcomes. We found that DQA1*03:01, DPB1*04:02, and DRB4*01:01 were signficantly more frequent in inividuals with active TB (susceptibility alleles). Furthermore, individuals who express any of the three susceptibility alleles were associated with lower magnitude of responses against Mtb antigens. We investigated the gene expression changes induced in PBMCs by Mtb lysate and a peptide pool (MTB300) in individuals with or without expression of the susceptibility alleles.
Project description:we have used large-scale mass spectrometry-based peptide sequencing to analyze the peptidomes of HLA-B*14:03, HLA-B*14:02, and HLA-B*27:05
Project description:Tankyrase, a poly(ADP-ribose) polymerase family member, destabilizes Axin and positively regulates the Wnt/β-catenin signaling. We demonstrated that tankyrase inhibitors can target the colorectal cancer stem-like cells. Tankyrase inhibitors efficiently suppress colorectal cancer stem-like cell proliferation via AXIN-dependent manner. We sorted CD44-positive COLO-320DM cells, which showed a characteristic of CSCs and were targeted by tankyrase inhibitors. We analyzed gene expression profile of CD44-positive cells (CD44-positive 01, 02, 03) and CD44-negative cells (CD44-negative 01, 02, 03).