Project description:The HLA-B*27 peptidome has drawn significant attention due to the genetic association between some of the HLA-B*27 alleles and the inflammatory rheumatic disease ankylosing spondylitis (AS). The role of HLA-B*27 in this condition is not known yet. This study aims to expand the known limits of the HLA-B*27 peptidome in order to facilitate selection and testing of new peptides, possibly implicated with the disease. The HLA peptidomes of HeLa and C1R cell lines stably transfected with the AS-associated HLA-B*27:05 allele, the non-associated HLA-B*27:09 allele, or their mutants with Cysteine 67 replaced by Serine (C67S), were analyzed on a very large scale. In addition, the peptidomes of HLA-B*27:05 and HLA-B*27:05-C67S were analyzed from transgenic rats’ spleens. The results indicate that a fraction of HLA-B*27 peptides contain lysine at their second position (P2), in addition to the more commonly found peptides with arginine, or the less common glutamine located at this anchor position. Furthermore, the C67S mutation increases the percentages of peptides with glutamine or lysine at their P2 position, in both HLA-B*27:05 and HLA-B*27:09. Therefore, peptides with P2 lysine should be considered as valid ligands of HLA-B*27 molecules and taken into account while looking for candidate for arithrogenic peptides.
Project description:The Human leukocyte antigen (HLA) -region, especially HLA class I and II genes, plays a major role in the predisposition to autoimmune disorders. Particularly three HLA haplotypes, DRB1*03-DQA1*05-DQB1*02 (DR3-DQ2), DRB1*04:01-DQA1*03-DQB1*03:02 (DR4-DQ8) and DRB1*15-DQA1*01-DQB1*06:02 (DR2-DQ6), have an important role in many autoimmune diseases: for example, in type 1 diabetes (T1D) the DR2-DQ6 is associated with a strongly decreased T1D risk and the DR3-DQ2 and DR4-DQ8 are associated with a moderately increased T1D risk. To clarify the mechanisms behind this association, we examined genome-wide DNA methylation in CD4+ T cells and CD19+ B cells of healthy subjects homozygous either for DR3-DQ2 (n = 19), DR4-DQ8 (n = 17) or DR2-DQ6 (n = 14), and compared methylation between the genotypes. For the study, CD4+ T cells and CD19+ B cells were isolated consecutively from PBMC samples using magnetic bead separation. DNA was extracted from the cell lysates with AllPrep DNA/RNA/miRNA Universal Kit (Qiagen, Germany). Then the individual DNA samples were pooled into 11 pooled samples with 4–5 samples per pooled sample. The original 50 samples were designated pools based on age and sex to ensure that the age and sex distributions would be as similar as possible between the pooled samples. The mean age (±SD) in the three HLA-groups (DR2-DQ6, DR3-DQ2 and DR4-DQ8) were 15.0 (±8.3), 11.1 (±5.6) and 11.8 (±7.9) and their male to female ratios were 8/6, 9/10 and 11/6. Similar pooled samples were created for both the CD4+ T cell and the CD19+ B cell samples. Then DNA methylation was examined in the pooled CD4+ T cell and CD19+ B cell samples using Illumina Infinium HumanMethylation EPIC beadchip.
Project description:The extreme polymorphisms of human leukocyte antigen (HLA) class I proteins result in structural variations in their peptide binding sites to achieve diversity in antigen presentation. External factors could independently constrict or alter HLA class I peptide repertoires. Such effects of the assembly factor tapasin were assessed for HLA-B*44:05 (Y116) and a close variant, HLA-B*44:02 (D116), which have low and high tapasin dependence, respectively, for their cell surface expression. Analyses of the HLA-B*44:05 peptidomes in the presence and absence of tapasin reveal that peptides with C-terminal tryptophans and higher predicted affinities are preferentially selected by tapasin, coincident with reduced frequencies of peptides with other C-terminal amino acids, including leucine. Comparisons of the HLA-B*44:05 and HLA-B*44:02 peptidomes indicate the expected structure-based alterations near the peptide C-termini, but also C-terminal amino acid frequency and predicted affinity changes among the unique and shared peptide groups for B*44:02 and B*44:05. Overall, these findings indicate that the presence of tapasin and the tapasin-dependence of assembly alter HLA class I peptide binding preferences at the peptide C-terminus. The particular C-terminal amino acid preferences that are altered by tapasin are expected to be determined by the intrinsic peptide binding specificities of HLA class I allotypes. Additionally, the findings suggest that tapasin deficiency and reduced tapasin dependence expand the permissive affinities of HLA class I bound peptides, consistent with prior findings that HLA class I allotypes with low tapasin dependence have increased breadth of CD8+ T cell epitope presentation and are more protective in HIV infections.
Project description:HLA-C expresion varies widely across the different HLA-C alleles. MicroRNA binding can partly explain the differences in HLA-C allele expression however other contributing factors still remain undetermined. Here we use two common HLA-C alleles, HLA-C*05:01 and HLA-C*07:02, to explore differences in expression levels. Using functional, structural and peptide repertoire comparisons we demonstrate that HLA-C expression levels are not only modulated at the RNA level but also at the protein level. This dataset contains RAW data and database search results for HLA-C*05:01 and HLA-C*07:02 from the 721.221 cell line.
Project description:HLA-B*40:02 is one of a few Major Histocompatibility Complex class I (MHC-I) molecules associated with ankylosing spondylitis (AS) independently of HLA-B*27. The endoplasmic reticulum aminopeptidase 2 (ERAP2), an enzyme that process MHC-I ligands and preferentially trims N-terminal basic residues, is also a risk factor for this disease. Like HLA-B*27 and other AS-associated MHC-I molecules, HLA-B*40:02 binds a relatively high percentage of peptides with ERAP2-susceptible residues. In this study the effects of ERAP2 depletion on the HLA-B*40:02 peptidome were analyzed. ERAP2 protein expression was knocked out by CRISPR in the transfectant cell line C1R-B*40:02 and the differences between the peptidomes from the wildtype and ERAP2-KO cells were determined by label-free quantitative comparisons. The qualitative changes dependent on ERAP2 affected about 5% of the peptidome, but quantitative changes in peptide amounts were much more substantial, reflecting a significant influence of this enzyme on the generation/destruction balance of HLA-B*40:02 ligands. As in HLA-B*27, a major effect was on the frequencies of N-terminal residues. In this position basic and small residues were increased in the absence of ERAP2 and aliphatic/aromatic residues were increased in the presence of the enzyme. Since most of the non-B*27 MHC-I molecules associated with AS risk also bind a relatively high percentage of peptides with N-terminal basic residues we hypothesize that the non-epistatic association of ERAP2 with AS might be related to the processing of peptides with these residues bound by AS-associated MHC-I molecules.
Project description:Several HLA allelic variants have been associated with protection from, or susceptibility to infectious and autoimmune diseases. Here, we examined whether specific HLA alleles would be associated with different Mtb infection outcomes. We found that DQA1*03:01, DPB1*04:02, and DRB4*01:01 were signficantly more frequent in inividuals with active TB (susceptibility alleles). Furthermore, individuals who express any of the three susceptibility alleles were associated with lower magnitude of responses against Mtb antigens. We investigated the gene expression changes induced in PBMCs by Mtb lysate and a peptide pool (MTB300) in individuals with or without expression of the susceptibility alleles.
Project description:The Endoplasmic reticulum aminopeptidase I (ERAP1) trims peptides to their optimal size for binding to Major Histocompatibility Complex class I proteins. The natural polymorphism of this enzyme is associated with ankylosing spondylitis (AS) in epistasis with the major risk factor for this disease, HLA-B*27, suggesting a direct relationship between AS and HLA-B*27-bound peptides. Three polymorphisms that affect peptide trimming protect from AS: K528R, D575N/R725Q, and Q730E. We characterized and ranked the effects of each mutation, and their various combinations, by quantitative comparisons of the HLA-B*27 peptidomes from cells expressing distinct ERAP1 variants. Five features were examined: peptide length, N-terminal flanking residues, N-terminal residues of the natural ligands, internal sequences and affinity for B*27:05. Polymorphism at residue 528 showed the largest influence, affecting all five features regardless of peptide length. D575N/R725Q showed a much smaller effect. Yet, when co-occurring with K528R, it added to this latter change in decreasing ERAP1 activity. Polymorphism at residue 730 showed a significant influence on peptide length, reflecting differential trimming of nonamers and longer peptides. Accordingly, multiple features were affected by the Q730E mutation in a length-dependent way. The alterations induced in the B*27:05 peptidome by natural ERAP1 variants with different K528R/Q730E combinations reflected separate and additive effects of both mutations. Thus, the influence of ERAP1 on HLA-B*27 is very diverse at the population level, due to the multiplicity and complexity of ERAP1 variants, and to the distinct effects of their co-occurring polymorphisms, leading to significant modulation of disease risk among HLA-B*27-positive individuals.
Project description:Somatic mutations in cancer are a potential source of cancer specific neoantigens. Acute myeloid leukemia (AML) has common recurrent mutations shared between patients in addition to private mutations specific to individuals. We hypothesized that neoantigens derived from recurrent shared mutations would be attractive targets for future immunotherapy and sought to study the Class I and II HLA ligandomes of thirteen primary AML tumor samples and two AML cell lines (OCI-AML3 and MV4-11) using mass spectrometry. We identified two endogenous, mutation-bearing HLA Class I ligands from NPM1, which are predicted to bind the common HLA haplotypes, HLA-A*03:01 and HLA-A*02:01 respectively. We further derived CD8+ T cells from healthy donor peripheral blood samples which bound mutant-peptide loaded A*03:01 and A*02:01 tetramers, suggesting a new source of NPM1 mutation-specific T cell receptors (TCRs) for future evaluation. Since NPM1 is mutated in approximately one-third of patients with AML, the finding of endogenous NPM1 neoantigens supports future studies evaluating immunotherapeutic approaches against this target, for this subset of patients with AML.
Project description:Treatment of cancer cells with anti-cancer drugs often fails to achieve complete remission. Yet, such drug treatments may induce alteration in the tumorâs gene expression patterns, including those of Cancer/Testis Antigens (CTA). The degradation products of such antigens can be presented as HLA peptides on the surface of the tumor cells and be developed into anti-cancer immunotherapeutics. For example, the DNA methyl transferase inhibitor, 5-aza-2'-deoxycytidine (Decitabine) has limited anti-tumor efficacy, yet it induces the expression of many genes, including CTAs that are normally silenced in the healthy adult tissues. In this study, the presentation of many new HLA peptides derived from CTAs and induced by Decitabine was demonstrated in three human Glioblastoma cell lines. Such presentation of CTA-derived HLA peptides can be exploited for development of new treatment modalities, combining drug treatment with anti-CTA targeted immunotherapy. The Decitabine-induced HLA peptidomes include many CTAs that are not normally detected in healthy tissues or in cancer cells, unless treated with the drug. In addition, the study included large-scale analyses of the simultaneous effects of Decitabine on the transcriptomes, proteomes and HLA peptidomes of the human Glioblastoma cells. It demonstrates the poor correlations between these three levels of gene expression, both in their total levels and in their response to the drug. The transcriptomes, proteomes and HLA peptidomes of the U-87, T98G and LNT-229 GBM human cell lines were analyzed before and after treatment with Decitabine. Overall, the RNA-Seq transcriptome analyses resulted in the identification of above 26000 transcripts, the proteome analyses identified about 7500 proteins and the HLA class I peptidome analyses resulted in above 25000 identified HLA peptides. Two biological repetitions of the transcriptome, three of the proteome and three of the HLA peptidome were performed with each of the cell lines and treatment, resulting in highly reproducible datasets.