Project description:Dermal papilla cells isolated from the human hair follicle are capable of inducing hair growth in recipient epithelia. However, demonstrating disparity from rodent dermal papilla, human cells lose this inductive competance immediately upon growth in culture under normal growth conditions. We grew dermal papilla cells in hanging drop cultures that are morphologically akin to intact dermal papilla, and found that by enhancing the environment for aggregation, we could restore the inductive capacity of human dermal papilla cells in culture. The underlying genes that regulate the inductive potential of dermal papilla cells is not well understood, and we sought to use global profiling to identify key genes and pathways related to inductive competance within dermal papilla cells. We used Affymetrix microarrays to profile human dermal papilla cells in both hair inducing, and non-hair inducing states.
Project description:Dermal papilla cells isolated from the human hair follicle are capable of inducing hair growth in recipient epithelia. However, demonstrating disparity from rodent dermal papilla, human cells lose this inductive competance immediately upon growth in culture under normal growth conditions. We grew dermal papilla cells in hanging drop cultures that are morphologically akin to intact dermal papilla, and found that by enhancing the environment for aggregation, we could restore the inductive capacity of human dermal papilla cells in culture. The underlying genes that regulate the inductive potential of dermal papilla cells is not well understood, and we sought to use global profiling to identify key genes and pathways related to inductive competance within dermal papilla cells. We used Affymetrix microarrays to profile human dermal papilla cells in both hair inducing, and non-hair inducing states. Affymetrix microarrays were used to to perform profiling of human dermal papilla cells, both as intact tissues (freshly isolated from scalp), and at several stages in subsequent two dimensional culture; cell explant outgrowths (p0), cells at passage 1 (p1), passage 3 (p3) and passage 5 (p5). RNA was isolated from cultured cells 72 hours after feeding. Cells at passage 3 were also grown in hanging drops to form dermal spheroids, that were used for RNA collection 48 hours after establishment. All experiments were performed using tissue from three biological replicates (#D5, D6, D7),
Project description:Three individual patient-originated (Scalp trauma; ages 37, 46 and 57) DPCs were used for the studies. Dermal papilla cells, derived from the frontal scalp of 3 women, were treated with normal medium (Ctrl group) and medium containing 10-7 M corticotropin-releasing hormone (CRH group) for 72 h. Proteins were extracted and digested with trypsin for 4D label-free quantitative proteomics (Shanghai Applied Protein Technology Co., Ltd.).
Project description:Transcriptome analysis of DP signature gene expression in hTERT-immortalized balding (BAB) and non-balding (BAN) dermal papilla cells derived from frontal and occipital scalp of male patients with androgenetic alopecia Hamilton grade IV.
Project description:Different types of hair follicles can be found in the skin of mice. It is believed that the signals that control hair follicle differentiation arise from cells in a structure called the dermal papilla. Understanding the nature of those signals is of interest for the biology of the normal tissue. We have developed a technique for isolation of dermal cells by enzymatic digestion of intact skin. We have identified two subpopulations of cells that can be separated by FACS. The Sox2-positive CD133-positive cells are found exclusively in the dermal papillae of guard/awl/auchene hairs, while Sox2-negative, CD133-positive cells are found in the other hair follicle types. We compared these populations with unfractionated dermal cells. We isolated the following 3 populations of cells from the back skin of neonatal mice (P2) by Flow Cytometry: 1) GFP-CD133- Total dermal cells 2) GFP-CD133+ Dermal Papilla cells 3) GFP+CD133+ Dermal Papilla cells The yield is approximately 50,000 cells of each population.
Project description:Here we have developed a novel FACS strategy to prospectively isolate hair follicle dermal stem cells, dermal sheath and dermal papilla cells from adult skin initiating synchronous hair follicle regeneration and identified Hic1 as a marker of hfDSCs and Rspondins as stimulators of hfDSCs and epithelial cells, and subsequently hair follicle regeneration
Project description:The use of dermal papilla cells for hair follicle (HF) regeneration is long accepted much attention. However, cultured dermal papilla cells tend to lose the hair-inducible capability during passaging, which restricts its application. Increasing evidences indicate that dermal papilla cells exert their regulatory function of HF growth mainly through their unique paracrine properties, opening up a way to exosome therapies.This study aimed to explore the effects of exosomes from high and low-passaged human scalp follicle dermal papilla cells (DP-Exos) on hair follicle stem cells (HFSCs) activation and hair growth, and to investigate the underline mechanism. DP-Exos were isolated by ultracentrifugation and cultured with human scalp follicles and HFSCs. The hair elongation and cell proliferation was assessed. Quantitative real-time PCR (qRT-PCR) and Western-blot were performed to detect the expression levels of a class of miRNAs and proteins which have positive roles in regulating hair growth and HFSCs proliferation. High throughput miRNA sequencing of miRNAs in high (P8) and low-passaged (P3) DP-Exos was performed, and the utmost miRNA and its target gene was identified via bioinformatics analysis.
Project description:The feather follicle is a “professional” regenerative organ that undergoes natural cycling and, regeneration after wound plucking. Similar to mammalian hair follicle, dermal papilla (DP) controls feather regeneration, shape, size, and axis. Here we report gene expression profiling for feather DP at different growth stages. For growth phase, we compared gene expression of DP, the ramogenic zone of feather branching epithelium (Erz) and the mesenchymal pulp (Pp). We also compared gene expression of DP at resting phase. To characterize the feather regeneration process, we further profiled gene expression at Day-2 and Day-4 post wound. Our results provide a resource for investigating feather growth and regeneration. Examination of gene expression in dermal papilla (DP) at growth phase and resting phase feather follicle, and during feather regeneration.
Project description:The dermal papilla plays a key role in the regulation of the hair biology. Accordingly, human dermal papilla cells (hDPCs) may be functionally impaired in female pattern hair loss. A previous observation that beta-estradiol (E2) increased hair density in ovariectomized mice suggested that E2 might modulate the biological properties of hDPCs. Therefore, to further explore the effect of E2 on hDPCs, a global gene expression analysis was conducted.