Project description:Hematopoietic stem cell (HSC) differentiation into mature lineages has been studied under physiological conditions in vivo by genetic barcoding-driven lineage tracing. HSC clones differ in output (differentiation-inactive versus differentiation-active), and in fates (multilineage versus lineage-restricted). Single-cell sequencing data revealed transcriptome diversity of HSC and progenitors, and suggested differentiation pathways. However, molecular hallmarks of functionally distinct HSC clones have not been resolved because existing lineage tracing experiments did not provide transcriptomes, and single cell RNA sequencing lacked information on precursor-product relationships, and hence fate. To close this gap, here we introduce PolyloxExpress, a Cre recombinase-dependent DNA substrate for in situ barcoding in mice that is expressed as mRNA. PolyloxExpress barcoding allows parallel readout of clonal HSC fates (via comparison of barcodes in HSC and mature lineages), and transcriptomes (via single-cell RNA sequencing and barcode matching). Analysing a total of 91 individual HSC clones, we show that differentiation-inactive versus differentiation-active HSC clones reside in different regions of the transcriptional landscape. Inactive HSC clones are closer to the origin of the transcriptional trajectory, yet are proliferatively not more quiescent than active clones. Multilineage versus myelo-erythroid fate-restricted HSC clones show very few transcriptional differences at the HSC stage, yet pronounced fate-specific profiles at the multipotent progenitor stage. Projecting HSC clones with defined fates onto transcriptional landscapes provides a basis for future studies into the molecular determinants for stem cell fate.
Project description:Hematopoietic stem cell (HSC) differentiation into mature lineages has been studied under physiological conditions in vivo by genetic barcoding-driven lineage tracing. HSC clones differ in output (differentiation-inactive versus differentiation-active), and in fates (multilineage versus lineage-restricted). Single-cell sequencing data revealed transcriptome diversity of HSC and progenitors, and suggested differentiation pathways. However, molecular hallmarks of functionally distinct HSC clones have not been resolved because existing lineage tracing experiments did not provide transcriptomes, and single cell RNA sequencing lacked information on precursor-product relationships, and hence fate. To close this gap, here we introduce PolyloxExpress, a Cre recombinase-dependent DNA substrate for in situ barcoding in mice that is expressed as mRNA. PolyloxExpress barcoding allows parallel readout of clonal HSC fates (via comparison of barcodes in HSC and mature lineages), and transcriptomes (via single-cell RNA sequencing and barcode matching). Analysing a total of 91 individual HSC clones, we show that differentiation-inactive versus differentiation-active HSC clones reside in different regions of the transcriptional landscape. Inactive HSC clones are closer to the origin of the transcriptional trajectory, yet are proliferatively not more quiescent than active clones. Multilineage versus myelo-erythroid fate-restricted HSC clones show very few transcriptional differences at the HSC stage, yet pronounced fate-specific profiles at the multipotent progenitor stage. Projecting HSC clones with defined fates onto transcriptional landscapes provides a basis for future studies into the molecular determinants for stem cell fate.
Project description:<p>Mitochondrial fatty acid oxidation (FAO) is essential for hematopoietic stem cell (HSC) self-renewal; however, the mechanism by which mitochondrial metabolism controls HSC fate remains unknown. Here, we show that within the hematopoietic lineage, HSCs have the largest mitochondrial NADPH pools, which are required for proper HSC cell fate and homeostasis. Bioinformatic analysis of the HSC transcriptome, biochemical assays and genetic inactivation of FAO all indicate that FAO-generated NADPH fuels cholesterol synthesis in HSCs. Interference with FAO disturbs the segregation of mitochondrial NADPH toward corresponding daughter cells upon single HSC division. Importantly, we have found that the FAO-NADPH-cholesterol axis drives extracellular vesicle (EV) biogenesis and release in HSCs, while inhibition of EV signaling impairs HSC self-renewal. These data reveal the existence of a mitochondrial NADPH-cholesterol axis for EV biogenesis that is required for hematopoietic homeostasis and highlight the non-stochastic nature of HSC fate determination.</p>
2025-07-07 | MTBLS6401 | MetaboLights
Project description:Resolving fate and transcriptome of hematopoietic stem cell clones