Project description:Epizoanthus species are generally found in association with other marine invertebrates such as hermit crabs and gastropods. Although Epizoanthus spp. are relatively common, there is limited information about their diversity and ecology due to their habitats or hosts, often being below the depths of SCUBA diving (>~50 m). In particular, the Epizoanthus fauna of the Indo-Pacific Ocean remains poorly understood. In this study, the diversity of Epizoanthus species associated with eunicid worm tubes from shallow waters in the Pacific Ocean we investigated using molecular analyses (mitochondrial cytochrome oxidase subunit 1 = COI, mitochondrial 16S ribosomal DNA = mt 16S-rDNA, nuclear internal transcribed spacer region of ribosomal DNA = ITS-rDNA) combined with morphological and ecological data. The combined data set leads us to describe two new species; Epizoanthus inazuma sp. n. and Epizoanthus beriber sp. n. Both new species are found in low-light environments: Epizoanthus inazuma sp. n. on mesophotic coral reef slopes and reef floors, or on the sides of overhangs; Epizoanthus beriber sp. n. has only been found in caves. Morphological characteristics of these two new species are very similar to Epizoanthus illoricatus Tischbierek, 1930 but the two new species are genetically distinct. Mesentery numbers and coloration of polyps may be useful diagnostic characteristics among eunicid-associated Epizoanthus species. These results demonstrate that there is high potential for other potentially undescribed zoantharian species, particularly in underwater cave habitats.
Project description:This study aims to investigate the DNA methylation patterns at transcription factor binding regions and their evolutionary conservation with respect to binding activity divergence. We combined newly generated bisulfite-sequencing experiments in livers of five mammals (human, macaque, mouse, rat and dog) and matched publicly available ChIP-sequencing data for five transcription factors (CEBPA, HNF4a, CTCF, ONECUT1 and FOXA1). To study the chromatin contexts of TF binding subjected to distinct evolutionary pressures, we integrated publicly available active promoter, active enhancer and primed enhancer calls determined by profiling genome wide patterns of H3K27ac, H3K4me3 and H3K4me1.
Project description:Whole genome sequencing of the Arabidopsis thaliana dot5-1 transposon insertion line described in Petricka et al 2008 The Plant Journal 56(2): 251-263.