Project description:We compared the microbiota of paired mouse caecal contents and faeces by applying a multi-omic approach, including 16S rDNA sequencing, shotgun metagenomics, and shotgun metaproteomics. The aim of the study was to verify whether faecal samples are a reliable proxy for the mouse colonic luminal microbiota, as well as to identify changes in taxonomy and functional activity between caecal and faecal microbial communities, which have to be carefully considered when using stool as sample for mouse gut microbiota investigations.
Project description:A phylogenetic microarray targeting 66 families described in the human gut microbiota has been developped aud used to monitor the gut microbiota's structure and diversity. The microarray format provided by Agilent and used in this study is 8x15K. A study with a total of 4 chips was realized. Arrays 1 and 2: Hybridization with 100ng of labelled 16S rRNA gene amplicons from a mock community sample and 250ng of labelled 16S rRNA gene amplicons from 1 faecal sample. Each Agilent-030618 array probe (4441) was synthetized in three replicates. Arrays 3 and 4: Hybridization with 250ng of labelled 16S rRNA gene amplicons from 2 faecal samples. Each Agilent-40558 array probe (4441) was synthetized in three replicates.
Project description:The gastrointestinal ecosystem is a highly complex environment with a profound influence on human health. Inflammation in the gut, linked to an altered gut microbiome has been associated with the development of multiple human conditions including type 1 diabetes (T1D). Viruses infecting the gastrointestinal tract, especially enteroviruses, are also thought to play an important role in T1D pathogenesis possibly via overlapping mechanisms. Here, we apply an integrative approach to combine comprehensive faecal virome, microbiome and metaproteome data sampled before and at the onset of islet autoimmunity in 40 children. We show strong age and antibody related effects across the datasets. Mastadenovirus infection was associated with profound functional changes in the faecal metaproteome. Multiomic factor analysis modelling revealed proteins associated with carbohydrate transport from the genus Faecalibacterium were associated with islet autoimmunity. These findings demonstrate functional remodelling of the gut microbiota accompanies both islet autoimmunity and viral infection.
Project description:Age-dependent changes of the gut-associated microbiome have been linked to increased frailty and systemic inflammation. This study found that age-associated changes of the gut microbiome of BALB/c and C57BL/6 mice could be reverted by co-housing of aged (22 months old) and adult (3 months old) mice for 30-40 days or faecal microbiota transplantation (FMT) from adult into aged mice. This was demonstrated using high-throughput sequencing of the V3-V4 hypervariable region of bacterial 16S rRNA gene isolated from faecal pellets collected from 3-4 months old adult and 22-23 months old aged mice before and after co-housing or FMT.
Project description:Intestinal microorganisms impact on health maintaining gut homeostasis and shaping the host immunity, while gut dysbiosis associates with many conditions including autism, a complex neurodevelopmental disorder with multifactorial aetiology. In autism, gut dysbiosis correlates with symptom severity and is characterized by a reduced bacterial variability and a diminished beneficial commensal relationship. Microbiota can influence the expression of host microRNAs that, in turn, regulate the growth of intestinal bacteria by means of bidirectional host-gut micro-biota cross-talk. We investigated possible interactions among intestinal microbes and between them and host transcriptional modulators in autism. To this purpose, we analysed, by “omics” technologies, faecal microbiome, mycobiome and small non-coding-RNAs (particularly miRNAs and piRNAs) of children with autism and neurotypical development. Patients displayed gut dysbiosis, related to a reduction of healthy gut micro- and mycobiota, and up-regulated tran-scriptional modulators. The targets of dysregulated non-coding-RNAs are involved in intestinal permeability, inflammation and autism. Furthermore, microbial families, underrepresented in patients, participate to the production of human essential metabolites negatively influencing the health condition. Here, we propose a novel approach to analyse faeces as a whole and, for the first time, we detected miRNAs and piRNAs in faecal samples of patients with autism.
Project description:The human gut microbiota is crucial for degrading dietary fibres from the diet. However, some of these bacteria can also degrade host glycans, such as mucins, the main component of the protective gut mucus layer. Specific microbiota species and mucin degradation patterns are associated with inflammatory processes in the colon. Yet, it remains unclear how the utilization of mucin glycans affects the degradation of dietary fibres by the human microbiota. Here, we used three dietary fibres (apple pectin, β-glucan and xylan) to study in vitro the dynamics of colon mucin and dietary fibre degradation by the human faecal microbiota. The dietary fibres showed clearly distinguishing modulatory effects on faecal microbiota composition. The utilization of colon mucin in cultures led to alterations in microbiota composition and metabolites. Metaproteome analysis showed the central role of the Bacteroides in degradation of complex fibres while Akkermansia muciniphila was the main degrader of colonic mucin. This work demonstrates the intricacy of complex glycan metabolism by the gut microbiota and how the utilization of host glycans leads to alterations in the metabolism of dietary fibres. Metaproteomics analysis of this data reveals the functional activities of the bacteria in consortia, by this contributing to a better understanding of the complex metabolic pathways within the human microbiota that can be manipulated to maximise beneficial microbiota-host interactions.
Project description:The human gut microbiota is crucial for degrading dietary fibres from the diet. However, some of these bacteria can also degrade host glycans, such as mucins, the main component of the protective gut mucus layer. Specific microbiota species and mucin degradation patterns are associated with inflammatory processes in the colon. Yet, it remains unclear how the utilization of mucin glycans affects the degradation of dietary fibres by the human microbiota. Here, we used three dietary fibres (apple pectin, β-glucan and xylan) to study in vitro the dynamics of colon mucin and dietary fibre degradation by the human faecal microbiota. The dietary fibres showed clearly distinguishing modulatory effects on faecal microbiota composition. The utilization of colon mucin in cultures led to alterations in microbiota composition and metabolites. Metaproteome analysis showed the central role of the Bacteroides in degradation of complex fibres while Akkermansia muciniphila was the main degrader of colonic mucin. This work demonstrates the intricacy of complex glycan metabolism by the gut microbiota and how the utilization of host glycans leads to alterations in the metabolism of dietary fibres. Metaproteomics analysis of this data reveals the functional activities of the bacteria in consortia, by this contributing to a better understanding of the complex metabolic pathways within the human microbiota that can be manipulated to maximise beneficial microbiota-host interactions. In this study two different mucin samples were used: commercial porcine gastric mucin and in house prepared porcine colonic mucin. This dataset analyses the proteome of: A) autoclaved porcine colonic mucin; B) not autoclaved porcine colonic mucin; C) porcine gastric mucin.
Project description:The search for factors beyond the radiotherapy dose that could identify patients more at risk of developing radio-induced toxicity is essential to establish personalised treatment protocols for improving the quality-of-life of survivors. To investigate the role of the intestinal microbiota in the development of radiotherapy-induced gastrointestinal toxicity, the MicroLearner observational cohort study characterised the intestinal microbiota of 136 (discovery) and 79 (validation) consecutive prostate cancer patients at baseline radiotherapy. Gastrointestinal toxicity was assessed weekly during RT using CTCAE. An average grade >1.3 over time points was used to identify patients suffering from persistent acute toxicity (endpoint). The intestinal microbiota of patients was quantified from the baseline faecal samples using 16S rRNA gene sequencing technology.
Project description:To further decipher the alteration of gene expression profile of irradiated mice with or without faecal microbiota transplantation (FMT), we performed FMT for 10 days following total body irradiaton (6.5 Gy gamma ray). Twenty-one days after irradiation, the mice were euthanized and the small intestine tissues excised.