Project description:Aristolochic acid (AA) is a major ingredient in several Chinese herbs that exhibits a wide range of pharmacological effects. Recently, clinical reports and experimental studies have demonstrated that AA causes renal toxicities, acute renal failure and interstitial fibrosis.However, the molecular mechanism underlying AA nephrotoxicity is not yet fully understood. Embryonic stem cells (ESCs) are pluripotent cells isolated from early embryos, which have highly undifferentiated potential and are capable of differentiating into all kinds of body tissues and organs. It has been reported that ESCs are sensitive to drug stimulation, and thus may serve as important tools for in vitro assessment of drug toxicity. We aimed to identify accurate biomarkers of AA-induced renal toxicity on ESCs. Genomics analysis was performed to screen the changes in gene expression levels of ESCs following treatment with AA, in order to determine the potential biological processes in which AA induces renal toxicity.
Project description:Aristolochic Acid I (AAI), one of the most abundant aristolochic acids (AAs), is nearly ubiquitous in herbal and traditional Chinese medicines within the Aristolochia genus. Renal tubular epithelial cell damage has been identified as a primary cause of AAI-induced nephrotoxicity. Genome-wide CRISPR library screening has proven valuable in identifying key genes associated with the toxicity of exogenous substances. To screen for genes related to AAI-induced renal toxicity, we conducted a genome-wide CRISPR library screening in HK-2 cell line. Among the altered sgRNAs, we observed significant enrichment of sgRNAs targeting E2F1 gene in survival HK-2 cells of the AAI-treated group, correlating with the promotion of AAI-induced cell apoptosis. Subsequent investigations revealed that E2F1 primarily promotes cellular apoptosis by activating the p53 signaling pathway, thereby enhancing the expression of pro-apoptotic genes, BAK and BAX. Additionally, we screened cannabidiol (CBD) as an inhibitor of E2F1 by utilizing the HERB database (http://herb.ac.cn/). Validation in both in vitro cell models and in vivo mouse models confirmed that CBD inhibits the expression of E2F1, consequently suppressing p53 signaling pathway-associated cell apoptosis. In conclusion, our results underscore the crucial role of E2F1 in AAI-induced renal cell apoptosis. Furthermore, the identification of CBD as a potential therapeutic candidate for AAI-induced renal toxicity provides new insights for understanding and treating AAI-induced nephrotoxicity.
Project description:Aristolochic acid (AA) is a nephrotoxic carcinogen responsible for acute kidney injury, chronic renal failure, and associated urothelial cancers. This study aims to determine the genes in xenobiotic metabolism pathway regulated by AA and clarify the molecular mechanism underlying their action.
Project description:Aristolochic acid nephropathy (AAN) is a kidney injury syndrome caused by aristolochic acids exposure, with unknown mechanisms and therapeutic targets. Our study used label-free quantitative proteomics to delineate renal protein profiles and identify key proteins after exposure to different doses of aristolochic acid I (AAI). Male C57BL/6 mice received AAI (1.25 mg/kg/d, 2.5 mg/kg/d, or 5 mg/kg/d) or vehicle for 5 days. The results showed that AAI induced dose-dependent nephrotoxicity. Differences in renal protein profiles between the control and AAI groups increased with AAI dose. Comparing the control with the low-, medium-, and high-dose AAI groups, we found 58, 210, and 271 differentially expressed proteins (DEPs), respectively. Furthermore, protein-protein interaction network analysis identified acyl-CoA synthetase medium-chain family member 3 (Acsm3), cytochrome P450 family 2 subfamily E member 1 (Cyp2e1), microsomal glutathione S-transferase 1 (Mgst1), and fetuin B (Fetub) as the key proteins. Proteomics revealed that AAI decreased Acsm3 and Cyp2e1 while increasing Mgst1 and Fetub expression in mice kidneys, which was further confirmed by Western blotting. Collectively, in AAI-induced nephrotoxicity, renal protein profiles were dysregulated and exacerbated with increasing AAI dose. Acsm3, Cyp2e1, Mgst1, and Fetub may be the potential therapeutic targets for AAN.
Project description:This study presents a comprehensive multi-omic analysis of upper urinary tract urothelial tumours (UTUC) and urines of patients with past exposure to carcinogenic aristolochic acid (AA). We determined complex miRNA:mRNA tumor networks and their key protein components. Tumor exome and transcriptome sequencing revealed a burden of AA-specific mutations in UTUC and identified deleteriously mutated genes and their mRNA transcripts. A subset of identified urinary miRNAs presents potential biomarkers of UTUC development or presence. Recurrent upper urinary tract carcinomas (UTUC) arise in the context of nephropathy linked to exposure to the herbal carcinogen aristolochic acid (AA). We aimed to delineate the detailed biological programs underlying UTUC tumorigenesis in patients from endemic aristolochic acid nephropathy (AAN) regions in Southern Europe, by using an integrative multi-omics analysis of UTUCs, corresponding unaffected tissues and of patient urines. Quantitative miRNA and mRNA expression profiling, immunohistochemical analysis by tissue microarrays, and exome and transcriptome sequencing were performed in UTUC and non-tumor tissues. Urinary miRNAsof cases undergoing surgery were profiled before and after UTUC resection. RNA and protein levels were analyzed using appropriate statistical tests and trend assessment. Dedicated bioinformatic tools were used for analysis of pathways, mutational signatures and result visualization. The results delineate UTUC-specific miRNA:mRNA networks comprising 89 miRNAs associated with 1862 target mRNAs and involving deregulation of cell cycle, DNA damage response, DNA repair, bladder cancer, oncogenes, tumor suppressors, chromatin structure regulators and developmental signaling pathways. Key UTUC-specific transcriptome components were confirmed at the protein level. Exome and transcriptome sequencing of UTUC revealed AA-specific COSMIC mutational signature 22, with 68-76% AA-specific, deleterious mutations propagated at the mRNA level. We next identified a signature of UTUC-specific miRNAs consistently more abundant in the patients’ urine prior to tumor resection. The gene regulation programs of AAN-associated UTUC tumors are highly complex and involve regulatory miRNAs prospectively applicable to non-invasive urine-based screening of AAN patients for cancer recurrence.
Project description:This study presents a comprehensive multi-omic analysis of upper urinary tract urothelial tumours (UTUC) and urines of patients with past exposure to carcinogenic aristolochic acid (AA). We determined complex miRNA:mRNA tumor networks and their key protein components. Tumor exome and transcriptome sequencing revealed a burden of AA-specific mutations in UTUC and identified deleteriously mutated genes and their mRNA transcripts. A subset of identified urinary miRNAs presents potential biomarkers of UTUC development or presence. Recurrent upper urinary tract carcinomas (UTUC) arise in the context of nephropathy linked to exposure to the herbal carcinogen aristolochic acid (AA). We aimed to delineate the detailed biological programs underlying UTUC tumorigenesis in patients from endemic aristolochic acid nephropathy (AAN) regions in Southern Europe, by using an integrative multi-omics analysis of UTUCs, corresponding unaffected tissues and of patient urines. Quantitative miRNA and mRNA expression profiling, immunohistochemical analysis by tissue microarrays, and exome and transcriptome sequencing were performed in UTUC and non-tumor tissues. Urinary miRNAsof cases undergoing surgery were profiled before and after UTUC resection. RNA and protein levels were analyzed using appropriate statistical tests and trend assessment. Dedicated bioinformatic tools were used for analysis of pathways, mutational signatures and result visualization. The results delineate UTUC-specific miRNA:mRNA networks comprising 89 miRNAs associated with 1862 target mRNAs and involving deregulation of cell cycle, DNA damage response, DNA repair, bladder cancer, oncogenes, tumor suppressors, chromatin structure regulators and developmental signaling pathways. Key UTUC-specific transcriptome components were confirmed at the protein level. Exome and transcriptome sequencing of UTUC revealed AA-specific COSMIC mutational signature 22, with 68-76% AA-specific, deleterious mutations propagated at the mRNA level. We next identified a signature of UTUC-specific miRNAs consistently more abundant in the patients’ urine prior to tumor resection. The gene regulation programs of AAN-associated UTUC tumors are highly complex and involve regulatory miRNAs prospectively applicable to non-invasive urine-based screening of AAN patients for cancer recurrence.
Project description:This study presents a comprehensive multi-omic analysis of upper urinary tract urothelial tumours (UTUC) and urines of patients with past exposure to carcinogenic aristolochic acid (AA). We determined complex miRNA:mRNA tumor networks and their key protein components. Tumor exome and transcriptome sequencing revealed a burden of AA-specific mutations in UTUC and identified deleteriously mutated genes and their mRNA transcripts. A subset of identified urinary miRNAs presents potential biomarkers of UTUC development or presence. Recurrent upper urinary tract carcinomas (UTUC) arise in the context of nephropathy linked to exposure to the herbal carcinogen aristolochic acid (AA). We aimed to delineate the detailed biological programs underlying UTUC tumorigenesis in patients from endemic aristolochic acid nephropathy (AAN) regions in Southern Europe, by using an integrative multi-omics analysis of UTUCs, corresponding unaffected tissues and of patient urines. Quantitative miRNA and mRNA expression profiling, immunohistochemical analysis by tissue microarrays, and exome and transcriptome sequencing were performed in UTUC and non-tumor tissues. Urinary miRNAsof cases undergoing surgery were profiled before and after UTUC resection. RNA and protein levels were analyzed using appropriate statistical tests and trend assessment. Dedicated bioinformatic tools were used for analysis of pathways, mutational signatures and result visualization. The results delineate UTUC-specific miRNA:mRNA networks comprising 89 miRNAs associated with 1862 target mRNAs and involving deregulation of cell cycle, DNA damage response, DNA repair, bladder cancer, oncogenes, tumor suppressors, chromatin structure regulators and developmental signaling pathways. Key UTUC-specific transcriptome components were confirmed at the protein level. Exome and transcriptome sequencing of UTUC revealed AA-specific COSMIC mutational signature 22, with 68-76% AA-specific, deleterious mutations propagated at the mRNA level. We next identified a signature of UTUC-specific miRNAs consistently more abundant in the patients’ urine prior to tumor resection. The gene regulation programs of AAN-associated UTUC tumors are highly complex and involve regulatory miRNAs prospectively applicable to non-invasive urine-based screening of AAN patients for cancer recurrence.