Project description:A shaving proteomic approach was applied to explore surface protein expression of multi- and pan-drug resistant strains of Pseudomonas aeruginosa isolated from the airways of cystic fibrosis patients with long-term chronic colonization compared to wild-type antibiotic-sensitive strains isolated from patients with recent infection.
Project description:Induced pluripotent stem cell (iPSC) models of neurodevelopmental disorders (NDDs) have promoted an understanding of commonalities and differences within or across patient populations by revealing the underlying molecular and cellular mechanisms contributing to disease pathology. Here, we focus on developing a human model for PPP2R5D-related NDD, called Jordan syndrome, which has been linked to Early-Onset Parkinson’s Disease (EOPD). This disease model includes patient-derived induced pluripotent stem cells (iPSCs) which were differentiated into neural stem cells (NSCs) and subsequently specified into a midbrain neural stem cell and neuronal state. We sought to understand the underlying molecular and cellular phenotypes across multiple cell states and neuronal subtypes in order to gain insight into Jordan syndrome pathology. Our work revealed that iPSC-derived midbrain neurons from Jordan syndrome patients display significant differences in dopamine-associated pathways and neuronal architecture.