Project description:Domestication of pig results in modifications of many traits, including fatness traits, which are important in pig production since they have effect on meat quality, fattening efficiency, reproduction and immunity.In this study, we investigate 3D genome organization and transcriptomic characterization of adipose tissues (ATs) between wild boars and Bama pig, a typical indigenous domestic pig in China, to uncover molecular mechanisms of fatness-phenotypic shifts.
Project description:Long non-coding RNAs (lncRNAs) play important roles in diverse biological processes. However, the landscape of lncRNAs is largely unclear in Sus scrofa. Here we performed stranded RNA-seq on total RNA libraries from over 100 samples of Sus scrofa tissues. We identified 10,813 lncRNAs in Sus scrofa, of which 9,075 are novel. 57% of these lncRNAs were conserved in both human and mouse. These conserved lncRNAs tend to be more tissue-specific than pig-specific lncRNAs, and enriched in reproducible organs (i.e. testis and ovary). We characterized a group of lncRNAs potentially involved in the skeletal muscle development. One such lncRNA, a homolog of maternally expressed gene 3 (MEG3), was specifically expressed in the skeletal muscle at early developmental stage. And its expression pattern is conserved in pig and mouse. By over-expressing and knocking down MEG3 in mouse myoblast cell lines, we demonstrated its novel function as a myoblast proliferation suppressor.
Project description:For gaining additional insights into the composition of the testicular proteome of the domestic pig (Sus scrofa domestica), we conducted 2DE-MS. Two-dimensional SDS PAGE was run on testicular lysates of three boars, with three gels per boar. Upon matching across gels, we arbitrarily selected protein spots for mass spectrometry analysis. Excised slices were vacuum dried and soaked with digestion buffer containing trypsin (0.01 μg/μl), followed by overnight incubation at 37°C in the same buffer without trypsin. Subsequently, peptides were extracted in solvents of increasing acetonitrile content, by sonication. Upon vacuum-centrifugation, peptides were reconstituted in 0.1% formic acid (FA). Following this, peptides were fractionated by reversed phase liquid chromatography (C18; buffer A: 0.1% FA dissolved in HPLC-H2O; buffer B: 0.1% FA, dissolved in CAN; flow-rate: 0.4 µL/min; gradient: 2-30% in 30 minutes). Eluted peptides were injected via an electrospray ionization interface into a Q-TOF mass spectrometer (one boar, Q TOF Ultima, Micromass/Waters, Manchester, UK) and an ion-trap mass spectrometer (two other boars, XCT ion-trap, Agilent Technologies, Waldbronn, Germany). We used ProteomeDiscoverer 2.4 (Thermo Fisher Scientific, San Jose, USA) for peptide and protein identification. Using Sequest HT, we searched peak lists (*.mgf) against the Sus scrofa reference proteome database (UniProt Proteome ID: UP000008227, 49,793 proteins).