Project description:Salmonella spp. biofilms have been implicated in persistence in the environment and plant surfaces. In addition, Salmonella is able to form biofilms on the surface on cholesterol gallstones. The ability of Salmonella spp. on these surfaces is superior to biofilm formation on surfaces on glass or plastic. Thus, we hypothesized that Salmonella gene expression is specific during biofilm development on cholesterol surfaces.
Project description:Salmonella spp. biofilms have been implicated in persistence in the environment and plant surfaces. In addition, Salmonella is able to form biofilms on the surface on cholesterol gallstones. The ability of Salmonella spp. on these surfaces is superior to biofilm formation on surfaces on glass or plastic. Thus, we hypothesized that Salmonella gene expression is specific during biofilm development on cholesterol surfaces. Flow through assays were performed whereby S. Typhimurium was inoculated into chambers coated with glass or cholesterol. At 24h post-inoculation, planktonic (from the flow through), biofilms (from glass or cholesterol) were collected. Thus we had 4 samples: Planktonic (2) and Biofilms (2), each with 2 biological replicates
Project description:This experiment set includes 64 arrays representing 26 serovars and strains of Salmonella spp. including many representatives of subspecies I, Arizona from subsp. IIIa, and S. bongori from subsp. V. The genomic DNA from all strains were labeled with Cy5 and hybridized against an equal amount (1.5 ug) of S. typhimurium SL1344 reference genomic DNA that was labeled with Cy3, all on an S. typhimurium SL1344 spotted DNA microarray. Most of the arrays are present in triplicate to account for variability in probe generation, hybridization, and slide quality. Several are represented in duplicate, and a few without any replicates. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Keywords: Logical Set