Project description:Lincomycin is a lincosamide antibiotic that forms cross-links within the peptidyl transferase loop region of the 23S rRNA of the 50S subunit of the bacterial ribosome, thereby inhibiting protein synthesis. We have previously reported that lincomycin at concentrations below the minimum inhibitory concentration potentiates the production of secondary metabolites in actinomycete strains. We aimed to elucidate the fundamental mechanisms underlying lincomycin induction of secondary metabolism in actinomycetes. Therefore, the dose-dependent response of lincomycin on gene expression of the model actinomycetes Streptomyces coelicolor A3(2) and possible relationships to secondary metabolism have been investigated.
Project description:Understanding the complexity of the long-lived HIV reservoir during antiretroviral therapy (ART) remains a major impediment for HIV cure research. To address this, we developed single-cell viral ASAPseq to precisely define the unperturbed peripheral blood HIV-infected memory CD4+ T cell reservoir from antiretroviral treated people living with HIV (ART-PLWH) via the presence of integrated accessible proviral DNA in concert with epigenetic and cell surface protein profiling. We identified profound reservoir heterogeneity within and between ART-PLWH, characterized by novel and known surface markers within total and individual memory CD4+ T cell subsets. We further uncovered novel epigenetic profiles and transcription factor motifs enriched in HIV-infected cells that suggest infected cells with accessible provirus, irrespective of reservoir distribution, are poised for reactivation during ART treatment. Together, our findings reveal the extensive inter- and intrapersonal cellular heterogeneity of the HIV reservoir, and establish an initial multiomic atlas to develop targeted reservoir elimination strategies.