Project description:Assessment and Clinical Utility of Metagenomic Next-Generation Sequencing for Suspected Lower Respiratory Tract Infections
| PRJNA1082520 | ENA
Project description:Clinical utility of metagenomic next-generation sequencing for pathogen detection and diagnosis in lower respiratory tract infections
Project description:Bovine respiratory epithelial cells have different susceptibility to bovine
respiratory syncytial virus infection. The cells derived from the lower
respiratory tract were significantly more susceptible to the virus than those
derived from the upper respiratory tract. Pre-infection with virus of lower
respiratory tract with increased adherence of P. multocida; this was not the
case for upper tract. However, the molecular mechanisms of enhanced
bacterial adherence are not completely understood. To investigate whether
virus infection regulates the cellular adherence receptor on bovine trachea-,
bronchus- and lung-epithelial cells, we performed proteomic analyses.
Project description:Next-Generation-Sequencing (NGS) technologies have led to important improvement in the detection of new or unrecognized infective agents, related to infectious diseases. In this context, NGS high-throughput technology can be used to achieve a comprehensive and unbiased sequencing of the nucleic acids present in a clinical sample (i.e. tissues). Metagenomic shotgun sequencing has emerged as powerful high-throughput approaches to analyze and survey microbial composition in the field of infectious diseases. By directly sequencing millions of nucleic acid molecules in a sample and matching the sequences to those available in databases, pathogens of an infectious disease can be inferred. Despite the large amount of metagenomic shotgun data produced, there is a lack of a comprehensive and easy-use pipeline for data analysis that avoid annoying and complicated bioinformatics steps. Here we present HOME-BIO, a modular and exhaustive pipeline for analysis of biological entity estimation, specific designed for shotgun sequenced clinical samples. HOME-BIO analysis provides comprehensive taxonomy classification by querying different source database and carry out main steps in metagenomic investigation. HOME-BIO is a powerful tool in the hand of biologist without computational experience, which are focused on metagenomic analysis. Its easy-to-use intrinsic characteristic allows users to simply import raw sequenced reads file and obtain taxonomy profile of their samples.
Project description:The impact of viral infections, on host microbiota composition and dynamics is poorly understood. Influenza A viruses (IAV) are common respiratory pathogens causing acute infections. In this study, we show dynamic changes in respiratory and intestinal microbiota over the course of a sublethal IAV infection in a mouse model. Using a combination of 16S rRNA gene specific next generation sequencing and qPCR as well as culturing of bacterial organ content, we found body site specific and transient microbiota responses to influenza infection. In the lower respiratory tract, we observed only minor qualitative changes in microbiota composition. In the small intestine, IAV induced robust depletion of bacterial content, disruption of mucus layer integrity and higher levels of antimicrobial peptides in Paneth cells. By RNAseq approach, we tried to analyze changes in transcriptomics of lung, and small intestine on the day of maximum changes to dissect possible causal players leading to the phentype observed.
Project description:We obtained small cell lung cancer specimens and normal lung specimens from patients who died of drug-resistant SCLC. The small lung cancer specimens include primary lesions and metastatic lesions. Next generation sequencing was performed to assess the expression of miRNA in drug-resistant small cell lung cancer.
Project description:In this study, we aim to investigate the value of circulating tumor DNA (ctDNA) analysis in the diagnosis, treatment, and surveillance of patients with surgically resectable colorectal cancer, by performing serial analysis of ctDNA, next-generation sequencing of surgical specimens, and observation of patients undergoing radical resection of the tumor with or without adjuvant chemo- and/or radiotherapy.