Project description:Peripheral blood gene expression analysis of IFIH1 rs1990760 variants in critically-ill COVID-19 patients with and without corticosteroids treatment
Project description:To determine whether differential expression of cellular microRNAs plays a role in the host response to Influenza A (H1N1) infection, we have employed the Agilent miRNA microarray (V3) as a discovery platform to identify microRNAs between the critically ill Patients with Influenza A (H1N1) and the healthy controls. Five critically ill patients with a diagnosis of 2009 Inflluenza A (H1N1) and three healthy controls were included in the study. The Peripheral Blood Mononuclear Cells (PBMCs) were isolated and total RNA was extracted respectively.
Project description:The outbreak of coronavirus disease 2019 (COVID-19) is a global health emergency. Various omics results have been reported for COVID-19, but the molecular hallmarks of COVID-19, especially in those patients without comorbidities, have not been fully investigated. Here we collect blood samples from 231 COVID-19 patients, prefiltered to exclude those with selected comorbidities, yet with symptoms ranging from asymptomatic to critically ill. Using integrative analysis of genomic, transcriptomic, proteomic, metabolomic and lipidomic profiles, we report a trans-omics landscape for COVID-19. Our analyses find neutrophils heterogeneity between asymptomatic and critically ill patients. Meanwhile, neutrophils over-activation, arginine depletion and tryptophan metabolites accumulation correlate with T cell dysfunction in critical patients. Our multi-omics data and characterization of peripheral blood from COVID-19 patients may thus help provide clues regarding pathophysiology of and potential therapeutic strategies for COVID-19.
Project description:It is known that about 60% of all human messenger RNAs (mRNAs) regulated by microRNAs, the role of mRNAs and microRNAs in the critically ill patients with Coronavirus Infection 2019 (COVID-19) is unknown. To evaluate mRNA and microRNA in whole blood of the critically ill patients with COVID-19 and to elucidate the pathogenesis of COVID-19 including the subsequent proteins profile following mRNA and microRNA integration analysis. RNA was extracted from the whole blood in 5 healthy controls and 10 critically ill patients with COVID-19 at the time of admission. mRNA and miRNA were measured by RNA sequence, and gene expression variation and pathway analysis were performed. As the IFNs proteins profile cohort, IFN-α2, IFN-β, IFN-γ, IL-27 and IFN-λ1 were measured on the day of admission (day 1, 181 critical and 22 non-critical patients) and day 6-8 (168 critical patients) in COVID19 patients and 19 healthy controls. Compared to healthy controls, 3488 mRNA and 31 miRNA genes were identified in the differentially expressed genes in the critically ill patients with COVID-19 (p-value<0.05, Log 2 fold change> |2|). In the canonical pathway analysis using Ingenuity Pathway Analysis (IPA), interferon signaling pathway was the most activated. In plasma interferon levels, IFN-β was elevated along with the increase of severity compared to healthy controls. IFN-λ1 was elevated in moderate disease compared to healthy controls, and conversely, IFN-λ1 was lower in severe disease than in moderate disease. Integration of mRNA and microRNA analysis showed activated interferon signaling. The plasma interferon proteins profile revealed that IFN-β (type I) and IFN-λ1 (type III) played an important role in the disease progression of COVID-19.
2022-06-22 | GSE182152 | GEO
Project description:WGS blood culture isolates from critically ill patients
Project description:A microarray analysis involving whole blood samples isolated from critically ill patients in the medical intensive care unit at Brigham and Women's Hospital. Four groups of intubated subjects undergoing mechanical ventilation were recruited for the study: those with sepsis alone (Sepsis), those with sepsis + ARDS (se/ARDS), those with SIRS (SIRS), and those whithout sepsis, SIRS, or ARDS (untreated). Blood was obtained from patients on the day of admission (day 0) and 7 days later. RNA was isolated from the whole blood samples and microarrays were prepared to determine differential gene expression between the four groups. Total RNA obtained from whole blood samples of critically ill patients
Project description:Genome-wide gene expression profiling of whole blood leukocytes in critically ill patients with sepsis or non-infectious disease has been used extensively in search of diagnostic biomarkers, as well as prognostic signatures reflecting diseases severity and outcome. Through technological advances in genomics it has become clear that transcription is not limited to protein-coding regions of the genome. Here, we describe a comprehensive analysis of RNA expression in blood leukocytes of critically ill patients with sepsis, a non-infectious condition and healthy subjects
Project description:Genome-wide gene expression profiling of whole blood leukocytes in critically ill patients with sepsis or non-infectious disease has been used extensively in search of diagnostic biomarkers, as well as prognostic signatures reflecting diseases severity and outcome. Through technological advances in genomics it has become clear that transcription is not limited to protein-coding regions of the genome. Here, we describe a comprehensive analysis of small non-coding RNA expression in blood leukocytes of critically ill patients with sepsis, a non-infectious condition, healthy subjects and experimental human endotoxemia