Project description:Immunopeptidome analysis of patient-derived colorectal cancer cell lines HROC113 and HROC285 T0 M2 from the HROC collection [Mullins et al. Cancers (Basel). 2019;11(10):1520. doi: 10.3390/cancers11101520] was performed to characterize the natural HLA class I presented ligandome in native as well as IFNγ treated cells.
Project description:We used microarray analysis to investigate whole genome transcriptome dynamics of the marine cyanobacterium Prochlorococcus sp. strain MED4 and the T7-like podovirus P-SSP7 over a time course during the 8 hour latent period of lytic infection prior to cell lysis. Manuscript Summary: Interactions between bacterial hosts and their viruses (phages) lead to reciprocal genome evolution through a dynamic co-evolutionary process1-5. Phage-mediated transfer of host genes – often located in genome islands – has had a major impact on microbial evolution1, 4, 6. Furthermore, phage genomes have clearly been shaped by the acquisition of genes from their hosts2, 3, 5. Here we investigate whole-genome expression of a host and phage, the marine cyanobacterium Prochlorococcus and a T7-like cyanophage during lytic infection, to gain insight into these co-evolutionary processes. While most of the phage genome was linearly transcribed over the course of infection, 4 phage-encoded bacterial metabolism genes were part of the same expression cluster, even though they are physically separated on the genome. These genes — encoding photosystem II D1 (psbA), high-light inducible protein (hli), transaldolase (talC) and ribonucleotide reductase (nrd) — are transcribed together with phage DNA replication genes and appear to make up a functional unit involved in energy and deoxynucleotide production needed for phage replication in resource-poor oceans. Also unique to this system was the upregulation of numerous genes in the host during infection. These may be host stress response genes, and/or genes induced by the phage. Many of these host genes are located in genome islands and have homologues in cyanophage genomes. We hypothesize that phage have evolved to utilize upregulated host genes, leading to their stable incorporation into phage genomes and their subsequent transfer back to hosts in genome islands. Thus activation of host genes during infection may be directing the co-evolution of gene content in both host and phage genomes. Keywords: time course, viral infection, marine cyanobacteria, podovirus, bacteriophage, stress response
Project description:Bacteriophages (phages) are widespread in Streptococcus pneumoniae, with most strains carrying phage genomes integrated into the chromosome. RNA sequencing was utilised to explore whether phage gene expression could be detected. The pneumococcal reference strain PMEN3 (Spain9V-3), which contained two full-length phages and one partial phage, was grown in broth culture and mitomycin C was added to facilitate phage induction. PMEN3 culture samples were taken at sequential time points and RNA was extracted and sequenced.
Project description:Bacteriophage (phage) are viruses that can kill bacteria, but also mediate gene transfer for bacterial evolution. The telomere phages are a curious form using telomere-like structures to replicate their genomes as linear extrachromosomal elements. Here we find that telomere phages are widely distributed in bacteria, being highly prevalent in Klebsiella species. We established a model system to investigate telomere phage biology and find only a small set of phage proteins are expressed in phage-host cells, including a toxin – telocin - that kills other Klebsiella strains. We identify and validate other telocins in the genomes of other, widespread Klebsiella telomere phages. Thus, telomere phages are widespread elements encoding diverse antibacterial weapons and we discuss the prospect of using telocins for precision editing of microbial populations.
Project description:A collection of 61 Salmonella enterica serovar Typhimurium (S. Typhimurium) of animal and human origin, matched as closely as possible by phage type, antimicrobial resistance pattern and place / time of isolation, and sourced from farms or hospitals in Scotland, were analysed by antimicrobial susceptibility testing, phage typing, pulsed field gel electrophoresis (PFGE), plasmid profiling and DNA microarrays. PFGE of all 61 isolates revealed ten PFGE profiles, which clustered by phage type and antibiotic resistance pattern, with human and animal isolates distributed between PFGE profiles. Analysis of 23 representative S. Typhimurium strains hybridised to a composite Salmonella DNA microarray identified a small number of specific regions of genome variation between different phage types and PFGE profiles. These variable regions of DNA were typically located within prophage-like elements. Simple PCR assays were subsequently designed to discriminate between different isolates from the same geographical region.
Project description:Acinetobacter baumannii is currently a major threat to human health. With the spread of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains, the development of complementary strategies is needed. A promising complimentary and realistic strategy could be phage therapy, which uses bacteriophages (phages), i.e viruses that specifically infect and kill bacterial cells during their life cycle. We designed a two-phage cocktail highly efficient against an extensive drug-resistant (XDR) A. baumannii isolate collected from a patient with burn wound infection at CHUV (termed Ab125). A first in vitro screen of our collection of 34 different phages identified only phage vB_AbaM_3098 as capable of lysing Ab125. However, quick selection of phage-resistant clones (termed Ab139) occurred. Comparative genomics and proteomics between Ab125 and Ab139 revealed several key variations. Very interestingly, we observed that Ab139 became susceptible to six different phages in the collection, otherwise inactive on Ab125. Phage-resistance was also selected when Ab139 was challenged with either of the six phages, with bacterial regrowth observed between 14 h and 16 h. However, combination of vB_AbaM_3098 and vB_AbaM_3014 led to a two-phage cocktail capable of totally inhibiting the growth of Ab125. Treatment with the phage cocktail led to 90% survival after 5 days in the in vivo Galleria Mellonella model of infectious diseases, compared to 0% in the non-treated group. We show that the combination of a phage that only slightly shifted the in vitro bacterial growth curve with an “inactive phage” led to the formulation of a highly bactericidal phage cocktail against Ab125. We then tested the therapeutic potential of the assembled cocktail in synergy with antibiotics and found a synergy with colistin. This work highlights the complexity sometimes involved in the assembly of potent phage cocktail.
Project description:Whole-genome sequencing is an important way to understand the genetic information, gene function, biological characteristics, and living mechanisms of organisms. There is no difficulty to have mega-level genomes sequenced at present. However, we encountered a hard-to-sequence genome of Pseudomonas aeruginosa phage PaP1. The shotgun sequencing method failed to dissect this genome. After insisting for 10 years and going over 3 generations of sequencing techniques, we successfully dissected the PaP1 genome with 91,715 bp in length. Single-molecule sequencing revealed that this genome contains lots of modified bases, including 51 N6-methyladenines (m6A) and 152 N4-methylcytosines (m4C). At the same time, further investigations revealed a novel immune mechanism of bacteria, by which the host bacteria can recognize and repel the modified bases containing inserts in large scale, and this led to the failure of the shotgun method in PaP1 genome sequencing. Strategy of resolving this problem is use of non-library dependent sequencing techniques or use of the nfi- mutant of E. coli DH5M-NM-1 as the host bacteria to construct the shotgun library. In conclusion, we unlock the mystery of phage PaP1 genome hard to be sequenced, and discover a new mechanism of bacterial immunity in present study. Methylation profiling of Pseudomonas aeruginosa phage PaP1 using kinetic data generated by single-molecule, real-time (SMRT) sequencing on the PacBio RS.