Project description:The purpose of the present study is to determine the effect of Phosphorus deficiency on gene expression level using microarray analysis to identify genes responsible for root hair development. Phosphorus deficiency induced the formation of root hairs to explore a greater soil volume but molecular mechanisms were unknown. Therefore, microarray experiments were performed using root tips of Brassica carinata cultivars Bale and Bacho, respectively differing in root hair length during Phosphorus deficiency. Experimental design was carried out in nutrient solution in a climate chamber with controlled environmental conditions (20°C, 16h day/8h night cycle, 70% relative humidity) in a randomized design. 25 root tips from 10 day old seedlings grown without Phosphorus of 1cm length were harvested and immediately frozen in liquid nitrogen. Gene expression analyses were performed
Project description:We explored the transcriptomic changes of synthetic Brassica allohexaploid by comparing to its parents using a high-throughput RNA-Seq method. A total of 35644409 sequence reads were generated, and 32642 genes were aligned from the data. There were 29260, 29060 and 29697 genes identified in Brassica rapa, Brassica carinata, and Brassica allohexaploid, respectively. We screened differentially expressed genes (DEGs) by a standard of two-fold or greater change in expression and false discovery rate (FDR) no more than 0.001. As a result, 7397 DEGs were detected between Brassica hexaploid and its parents. A large proportion of the 3184 DEGs between Brassica hexaploid and its paternal parent B. rapa was involved in biosynthesis of secondary metabolites, plant-pathogen interaction, photosynthesis, and circadian rhythm. Between Brassica hexaploid and its maternal parent B. carinata, 2233 DEGs were screened. A lot of them had functions of plant-pathogen interaction, plant hormone signal transduction, ribosome, limonene and pinene degradation, photosynthesis, and also biosynthesis of secondary metabolites. In addition, we found many transcription factor genes, methyltransferase and methylation genes that showed differential expression between Brassica hexaploid and its parents. Leaf mRNA profiles of Brassica rapa, Brassica carinata, and Brassica allohexaploid
Project description:Powdery mildew caused by Erysiphe cruciferarum, is an epidemic of oil rapeseed (Brassica napus) growing worldwide, but resistant germplasm is rare in this species. We obtained the hybrid seeds of distant hybridization between powdery-mildew-immune Brassica carinata cultivar ‘White flower’ and susceptible B. napus cultivar ‘Zhongshuang11’. Five lines in the BC1F3 generation (F3 after backcross to 'Zhongshuang11') were identified to be resistant or moderately resistant. In order to identify the important biological responses to powdery mildew, the foliar transcriptomes of the resistant and susceptible plants in these progenies after powdery mildew inoculation were compared by using Illumina RNA-seq. We identified 10,454 differential expression genes (DEGs) and 1050 genes out of them are related to disease resistance. There were 271 DEGs in Group Resistance expressed at least two fold higher than in group S, while 779 DGEs expressed two fold lower. The genes highly expressed in Group Resistance are those encoding the proteins: (1) related to wax, chloroplast and cell wall metabolism, such as KCS6, CSP41B, RWA, callose synthetase 3, pectinase 9, fructosidase 2, 9s-lipoxygenase LOX2, etc.; (2) kinases including RKL, ERECTA, BAK1, BAM2, LysM receptor like kinase, and lipid transfer protein kinase ERl1 and ERl2; (3) broad spectrum powdery mildew resistance proteins RPW8, calmodulin MLO2, PMR5, MLP328, EDR2, RPS4 and RPS6, etc. In group susceptible, pectinesterase, cytochrome CYP81f2, LOX1, cysteine rich receptor protein kinases and serine / threonine protein kinases such as MEKK, RLK6, CRK45, APK1, BRl3, WAK1, WAK10, etc., and TIR-NB-LRR receptor like proteins R1M1, DSC1, DSC2 and pathogenesis-related protein PR-1 etc. were the most activated genes. The results provide the preliminarily knowledge about molecular mechanism in rapeseed defense response to powdery mildew.