Project description:Legumes interact with rhizobia, leading to the development of root nodules. Diffusible rhizobial signals were identified as Nod-LCOs. Applying Nod-LCOs on plantlet roots, we used GeneChips to detail the global programme of gene expression in response to the external application of Nod-LCOs.
Project description:Legumes grow specialized root nodules that are distinct from lateral roots in morphology and function, with nodules intracellularly hosting beneficial nitrogen-fixing bacteria that provide the plant with nitrogen. We have previously shown that a lateral root-like program underpins nodule initiation, but there must be additional developmental programs that confer nodule identity. Here, we show that two members of the LIGHT SENSITIVE SHORT HYPOCOTYL (LSH) transcription factor family, known to define organ boundaries and meristem complexity in the shoot, function as regulators of nodule organ identity. LSH1/LSH2 function upstream of and together with the known nodule regulators Nuclear Factor Y A1 and NODULE ROOT1/2. The principal outcome of LSH1/LSH2 function is the production of cells able to accommodate nitrogen-fixing bacteria, a unique nodule feature. We conclude that the coordinate recruitment of a pre-existing shoot developmental program, in parallel to a root program, underpins the divergence between lateral roots and nodules.
Project description:Legumes perform symbiotic nitrogen fixation through rhizobial bacteroids housed in specialised root nodules. The biochemical process is energy‐intensive and consumes a huge carbon source to generate sufficient reducing power. To maintain the symbiosis, malate is supplied by legume nodules to bacteroids as their major carbon and energy source in return for ammonium ions and nitrogenous compounds. To sustain the carbon supply to bacteroids, nodule cells undergo drastic reorganisation of carbon metabolism. Here, a comprehensive quantitative comparison of the mitochondrial proteomes between root nodules and uninoculated roots was performed using data‐independent acquisition proteomics, revealing the modulations in nodule mitochondrial proteins and pathways in response to carbon reallocation. Corroborated our findings with that from the literature, we believe nodules preferably allocate cytosolic phosphoenolpyruvates towards malate synthesis in lieu of pyruvate synthesis, and nodule mitochondria prefer malate over pyruvate as the primary source of NADH for ATP production. Moreover, the differential regulation of respiratory chain‐associated proteins suggests that nodule mitochondria could enhance the efficiencies of complexes I and IV for ATP synthesis. This study highlighted a quantitative proteomic view of the mitochondrial adaptation in soybean nodules.
Project description:Rhizobia are soil bacteria that can enter into complex symbiotic relationships with legumes, where rhizobia induce the formation of nodules on the plant root. Inside nodules, rhizobia differentiate into nitrogen-fixing bacteroids that reduce atmospheric nitrogen into ammonia, secreting it to the plant host in exchange for carbon. During the transition from free-living bacteria to bacteroids, rhizobial metabolism undergoes major changes. To investigate the metabolism of bacteroids and contrast it with the free-living state, we quantified the proteome of unlabelled bacteroids relative to 15N-labelled free-living rhizobia. The data were used to build a core metabolic model of pea bacteroids for the strain Rhizobium leguminosarum bv. viciae 3841.
Project description:Paraburkholderia phymatum belongs to the β-subclass of proteobacteria. It has recently been shown to be able to nodulate and fix nitrogen in symbiosis with several mimosoid and papillionoid legumes. In contrast to symbiosis of legumes with α-proteobacteria, very little is known about the molecular determinants underlying the successful establishment of this mutualistic relationship with β-proteobacteria. In this study, we analyzed RNA-seq data of free-living P. phymatum growing under nitrogen replete and limited conditions, the latter partially mimicking the situation in nitrogen deprived soils. Among the genes up-regulated under nitrogen limitation, we found genes involved in exopolysaccharide production and motility, two traits relevant for plant root infection. Next, RNA-seq data of P. phymatum grown under free-living conditions and from symbiotic root nodules of Phaseolus vulgaris (common bean) were generated and compared. Among the genes highly up-regulated during symbiosis, we identified an operon encoding a potential cytochrome o ubiquinol oxidase (Bphy_3646-49). Bean root nodules induced by a cyoB mutant strain showed reduced nitrogenase and nitrogen fixation abilities suggesting an important role of the cytochrome for respiration inside the nodule. Analysis of mutant strains for RNA polymerase transcription factor rpoN (σ54) and its activator NifA indicated that – similar to the situation in α-rhizobia – P. phymatum RpoN and NifA are key regulators during symbiosis with P. vulgaris.
Project description:Legumes interact with soil microbes, leading to the development of nitrogen-fixing root nodules and arbuscular mycorrhizal (AM) roots. While nodule initiation by diffusible lipochitooligosaccharide (LCO) Nod-factors of bacterial origin (Nod-LCOs) is well characterized, diffusible AM fungal signals were only recently identified as sulphated and non-sulphated LCOs (sMyc-LCOs and nsMyc-LCOs). Applying Myc-LCOs in parallel to Nod-LCOs, we used GeneChips to detail the global programme of gene expression in response to the external application of symbiotic LCOs.
Project description:12plex_medicago_2014_02 - nar nodule vs root transcriptome - which are the genes differentially expressed in alfalfa spontaneous (non rhizobium-infected) nodules vs. control roots? - biological material: aeroponically grown cuttings of a Medicago sativa (alfalfa) accession that produces empty nodules when nitrogen-starved. Samples for transcriptome comparison: isolated NAR nodules (10 days post N-starvation) vs. roots of the same plants (pools of 3 roots).
Project description:The nuclei of Glycine max root seedlings (6 days-old) and nodules (28 days-old) were isolated and the library consstruction was performed applying 10x Genomics tecnology.