Project description:Salmonella enterica subsp. enterica contains more than 2,600 serovars of which four are of major medical relevance for humans. While the typhoidal serovars (Typhi and Paratyphi A) are human-restricted and cause enteric fever, non-typhoidal Salmonella serovars (Typhimurium and Enteritidis) have a broad host range and predominantly cause gastroenteritis. In this study, we compared the core proteomes of Salmonella Typhi, Paratyphi A, Typhimurium and Enteritidis using contemporary proteomics. Five isolates, covering different geographical origins, and one reference strain per serovar were grown in vitro to the exponential phase. Protein levels of orthologous proteins between serovars were compared and subjected to gene ontology term enrichment and inferred regulatory interactions. Differential expression of the core proteomes of the typhoidal serovars appears mainly related to cell surface components and, for the non-typhoidal serovars, to pathogenicity. Our findings may guide future development of novel diagnostics and vaccines, and understanding of disease progression.
Project description:Acinetobacter baumannii is often highly resistant to multiple antimicrobials, posing a risk of treatment failure. Colistin is often chosen as a “last resort” for treatment of the bacterial infection, but resistance is easily developed when the bacteria is exposed to the drug. Thus a comprehensive analysis of colistin-mediated changes in colistin-susceptible and colistin-resistant A. baumannii is needed. In this study, we used a colistin-susceptible A. baumannii clinical isolate and a colistin-resistant isogenic mutant. Whole genome sequencing revealed that the resistant isolate harbored a PmrBL208F mutation conferring colistin resistance, and all other single nucleotide alterations were located in intergenic regions. Using scanning electron microscopy, we observed that the colistin-resistant mutant had a shorter cell length than the parental isolate, and filamented cells were observed when both isolates were exposed to inhibitory concentration of colistin. When the isolates were treated with inhibitory concentrations of colistin, more than 80% of the genes were upregulated, including genes associated with antioxidative stress response pathways. This results helped a better understanding for the morphological difference between the colistin-susceptible and –resistant isolates and differed colistin-mediated responses in A. baumannii isolates by their susceptibility to this drug.
2025-05-02 | GSE267612 | GEO
Project description:Colistin resistant and colistin susceptible Salmonella enterica
Project description:Environmental stress contributes to the outcome of infection by impacting both microbial virulence and host susceptibility to infection. Thermal processing, commonly used for decontamination of poultry in the food industry, may elicit sublethal stress on resistant serovars of Salmonella. We employed traditional heat shock temperatures (42 and 48ºC), similar to avian body temperature and poultry processing conditions, to study gene expression of Salmonella enterica serovar Typhimurium. Microarray analysis indicated that thermal shock at 42°C and 48°C induced expression of SPI-2 and SPI-5 genes, whose products are required for adhesion and survival. However, SPI-1 genes, responsible for invasion of Salmonella into host cells, were down-regulated following exposure to 42°C and 48°C. Bacterial adhesion assays showed greater adhesion of heat-stressed S. Typhimurium to Caco-2 cells compared to non-stressed bacteria. In addition, subjecting Caco-2 cells to mild heat shock (39°C), which is similar to human fever, enhanced host cell susceptibility to bacterial adhesion. Data indicate that thermal stress enhances bacterial colonization and host cell susceptibility to adhesion during S. Typhimurium infection.
Project description:Many non-typhoidal serovars of Salmonella such as Salmonella enterica serovar Typhimurium (S. Typhimurium) are the leading cause of food-borne gastroenteritis, resulting in millions of infections each year and sometimes death. Salmonella enterica serovar Typhimurium is the most common non-typhoidal Salmonella strain isolated from patients around the world and is used as a mouse model to study bacterial pathogenesis and host-microbe interactions. Furthermore, S. Typhimurium is an important pathogen in livestock animals including chickens and cattle. S. Typhimurium utilises a multitude of virulence factors to reach and invade host cells and for its intracellular survival. However, little is known about the mechanism of protein synthesis of these virulence factors at the codon level. Here, we performed RNA-seq and ribosome profiling. Ribosome profiling allows the global mapping of translating ribosomes on the transcriptome and therefore provides direct measure of protein synthesis.