Project description:Investigation of the overall in vitro response of Bacteroides thetaiotaomicron to human milk oligosaccharides. Comparison with response to MM-lactose and MM-galactose (Analysis performed using as a baseline datasets GSM301635 and GSM301637 corresponding to Bacteroides thetaiotaomicron response in MM-Glucose) In vitro transcriptional profiles of Bacteroides thetaiotaomicron obtained from biological duplicate cultures taken: (i) at middle log phase in minimal media galactose (MM-Gal) and minimal media lactose (MM-L) and (ii) at two timepoints during log phase in minimal media human milk oligosaccharides (MM-HMO).
Project description:Bifidobacterium species in the infant gut can metabolize intact human milk oligosaccrides. There is species varation in the types of the olgosaccharides that can bedigested by Bifidobacterium species. B. breve strains have shown digestion of LNT and LNnT oligoscchrides. The objective of te current study was idetification of B. breve strains that can digest sialylated oligosacchrides. The currnet study was designed to idetify the genes that show upregulation when grown in lactose, 3'-siallylactose and Bovine Milk Oligosaccharides
Project description:Investigation of the overall in vitro response of Bacteroides thetaiotaomicron to human milk oligosaccharides. Comparison with response to MM-lactose and MM-galactose (Analysis performed using as a baseline datasets GSM301635 and GSM301637 corresponding to Bacteroides thetaiotaomicron response in MM-Glucose)
Project description:The purpose of this project was to determine the whole transcriptome response of Bifidobacterium longum subsp. Infantis to pooled and individual human milk oligosaccharides (HMO) relative to lactose Bacterial isolates grown on lactose, pooled human milk oligosaccharides (HMO), lacto-N-tetraose (LNT), lacto-N-neotetraose (LNnT), 2âfucosyllactose (2âFL), 3-fucosyllactose (3FL), and 6âsialyllactose (6âSL). RNA was extracted and sequenced, in duplicate, on an Illumina HiSeq. Early, mid, and late timepoints in response to pooled HMO were additionally sequenced in duplicate.
Project description:The purpose of this project was to determine the whole transcriptome response of Bifidobacterium bifidum SC555 to pooled and individual human milk oligosaccharides (HMO) relative to lactose Bacterial isolates grown on lactose, pooled human milk oligosaccharides (HMO), lacto-N-tetraose (LNT), lacto-N-neotetraose (LNnT), 2âfucosyllactose (2âFL), 3-fucosyllactose (3FL), 6âsialyllactose (6âSL) and porcine mucin (MUC). RNA was extracted and sequenced, in duplicate, on an Illumina HiSeq. Early, mid, and late timepoints in response to pooled HMO were additionally sequenced in duplicate.
Project description:The purpose of this project was to determine the whole transcriptome response of Bifidobacterium bifidum SC555 to pooled and individual human milk oligosaccharides (HMO) relative to lactose
Project description:The purpose of this project was to determine the whole transcriptome response of Bifidobacterium longum subsp. Infantis to pooled and individual human milk oligosaccharides (HMO) relative to lactose
Project description:The purpose of this project was to determine the whole transcriptome response of Bifidobacterium longum subsp. longum SC596 to pooled and individual human milk oligosaccharides (HMO) relative to lactose
Project description:Here we studied the glycation of bovine milk proteins by lactose as dominant sugar in milk and hexoses using tandem mass spectrometry (CID and ETD mode). In a bottom-up proteomics approach after enriching glycated peptides by boronate affinity chromatography, first we could identify 260 lactosylated peptides corresponding to 124 lactosylation sites in 28 bovine milk proteins in raw milk, raw colostrum, three brands of pasteurized milk, three brands of UHT milk, and five brands of infant formula. The same regular and additionally two lactose-free milk products (pasteurized and UHT milk) where lactose is enzymatically cleaved into the more reactive hexoses were analyzed in terms of hexosylation sites that resulted in identification of 124 hexosylated tryptic peptides corresponding to 86 glycation sites in 17 bovine milk proteins. In quantitative terms glycation increased from raw milk to pasteurized milk to UHT milk and infant formula, i.e., with the harsher processing conditions. Lactose-free milk contained significantly higher hexosylation degrees than the corresponding regular milk product.
Project description:This study was conducted in order to monitor whether or not Akkermansia muciniphila was able to grow and utilize human milk and human milk oligosaccharides by deploying its mucin degrading enzymes. Interestingly, A. muciniphila was able to grow in human milk producing Short Chain Fatty Acids and degrade milk oligosaccharides (2’-fucosyllactose, 3’-siallylactose) as well as lactose.