Project description:Rationale: Recent studies suggest a potential link between gut bacterial microbiota dysbiosis and PAH, but the exact role of gut microbial communities, including bacteria, archaea, and fungi, in PAH remains unclear. Objectives: To investigate the role of gut microbiota dysbiosis in idiopathic pulmonary arterial hypertension (IPAH) and to assess the therapeutic potential of fecal microbiota transplantation (FMT) in modulating PAH progression. Methods: Using shotgun metagenomics, we analyzed gut microbial communities in IPAH patients and healthy controls. FMT was performed to transfer gut microbiota from IPAH patients or MCT-PAH rats to normal rats and from healthy rats to MCT-PAH rats. Hemodynamic measurements, echocardiography, histological examination, metabolomic and RNA-seq analysis were conducted to evaluate the effects of FMT on PAH phenotypes. Measurements and Main Results: Gut microbiota analysis revealed significant alterations in the bacterial, archaeal, and fungal communities in IPAH patients compared to healthy controls. FMT from IPAH patients induced PAH phenotypes in recipient rats. Conversely, FMT from healthy rats to IPAH rats significantly ameliorated PAH symptoms, restored gut microbiota composition, and normalized serum metabolite profiles. Specific microbial species were identified with high diagnostic potential for IPAH, improving predictive performance beyond individual or combined microbial communities. Conclusions: This study establishes a causal link between gut microbiota dysbiosis and IPAH and demonstrates the therapeutic potential of FMT in reversing PAH phenotypes. The findings highlight the critical role of bacterial, archaeal, and fungal communities in PAH pathogenesis and suggest that modulation of the gut microbiome could be a promising treatment strategy for PAH.
Project description:Parkinson's disease (PD) is a common neurodegenerative disease in middle-aged and elderly people. The disorder of gut microbiota is involved in the pathophysiological process of various neurological diseases, and many studies have confirmed that gut microbiota is involved in the progression of PD. As one of the most effective methods to reconstruct gut microbiota, fecal microbiota transplantation (FMT) has been considered as an important treatment for PD. However, the mechanism of FMT treatment for PD is still lacking, which requires further exploration and can facilitate the application of FMT. As a model organism, Drosophila is highly conserved with mammalian system in maintaining intestinal homeostasis. In this study, there were significant differences in the gut microbiota of conventional Drosophila colonized from PD patients compared to those transplanted from normal controls. And we constructed rotenone-induced PD model in Drosophila followed by FMT in different groups, and investigated the impact of gut microbiome on transcriptome of the PD host. Microbial analysis by 16S rDNA sequencing showed that gut microbiota could affect bacterial structure of PD, which was confirmed by bacterial colonization results. In addition, transcriptome data suggested that gut microbiota can influence gene expression pattern of PD. Further experimental validations confirmed that lysosome and neuroactive ligand-receptor interaction are the most significantly influenced functional pathways by PD-derived gut microbiota. In summary, our data reveals the influence of PD-derived gut microbiota on host transcriptome and helps better understanding the interaction between gut microbiota and PD through gut-brain axis. The present study will facilitate the understanding of the mechanism underlying PD treatment with FMT in clinical practice.
Project description:This study aimed to analyze changes in gut microbiota composition in mice after transplantation of fecal microbiota (FMT, N = 6) from the feces of NSCLC patients by analyzing fecal content using 16S rRNA sequencing, 10 days after transplantation. Specific-pathogen-free (SPF) mice were used for each experiments (N=4) as controls.
Project description:Age-dependent changes of the gut-associated microbiome have been linked to increased frailty and systemic inflammation. This study found that age-associated changes of the gut microbiome of BALB/c and C57BL/6 mice could be reverted by co-housing of aged (22 months old) and adult (3 months old) mice for 30-40 days or faecal microbiota transplantation (FMT) from adult into aged mice. This was demonstrated using high-throughput sequencing of the V3-V4 hypervariable region of bacterial 16S rRNA gene isolated from faecal pellets collected from 3-4 months old adult and 22-23 months old aged mice before and after co-housing or FMT.
Project description:Rationale: Physical exercise is essential for skeletal integrity and bone health. The gut microbiome, as a pivotal modulator of overall physiologic states, is closely associated with skeletal homeostasis and bone metabolism. However, the potential role of intestinal microbiota in the exercise-mediated bone gain remains unclear. Methods: We conducted microbiota depletion and fecal microbiota transplantation (FMT) in ovariectomy (OVX) mice and aged mice to investigate whether the transfer of gut ecological traits could confer the exercise-induced bone protective effects. The study analyzed the gut microbiota and metabolic profiles via 16S rRNA gene sequencing and LC-MS untargeted metabolomics to identify key microbial communities and metabolites responsible for bone protection. Transcriptome sequencing and RNA interference were employed to explore the molecular mechanisms. Results: We found that gut microbiota depletion hindered the osteogenic benefits of exercise, and FMT from exercised osteoporotic mice effectively mitigated osteopenia. Comprehensive profiling of the microbiome and metabolome revealed that the exercise-matched FMT reshaped intestinal microecology and metabolic landscape. Notably, alterations in bile acid metabolism, specifically the enrichment of taurine and ursodeoxycholic acid, mediated the protective effects on bone mass. Mechanistically, FMT from exercised mice activated the apelin signaling pathway and restored the bone-fat balance in recipient MSCs. Conclusion: Our study underscored the important role of the microbiota-metabolic axis in the exercise-mediated bone gain, heralding a potential breakthrough in the treatment of osteoporosis.
Project description:The aim of this study was to test the hypothesis that replenishing the microbiota with a fecal microbiota transplant (FMT) can rescue a host from an advanced stage of sepsis. We developed a clinically-relevant mouse model of lethal polymicrobial gut-derived sepsis in mice using a 4-member pathogen community (Candida albicans, Klebsiella oxytoca, Serratia marcescens, Enterococcus faecalis) isolated from a critically ill patient. In order to mimic pre-operative surgical patient condition mice were exposed to food restriction and antibiotics. Approximately 18 hours prior to surgery food was removed from the cages and the mice were allowed only tap water. Each mouse received an intramuscular Cefoxitin injection 30 minutes prior to the incision at a concentration of 25 mg/kg into the left thigh. Mice were then subjected to a midline laparotomy, 30% hepatectomy of the left lateral lobe of the liver and a direct cecal inoculation of 200 µL of the four pathogen community. On postoperative day one, the mice were administered rectal enema. Mice were given either 1 ml of fecal microbiota transplant (FMT) or an autoclaved control (AC). This was again repeated on postoperative day two. Mice were then followed for mortality. Chow was restored to the cages on postoperative day two, approximately 45 hours after the operation. The injection of fecal microbiota transplant by enema significantly protected mice survival, reversed the composition of gut microflora and down-regulated the host inflammatory response. The cecum, left lobe of the liver, and spleen were isolated from mice for microarray processing with three or more replicates for six expermental conditions: non-treated control, SAHC POD1, SAHC.AC POD2, SAHC.FMT POD2, SAHC.AC POD7, SAHC.FMT POD7
Project description:Intestinal barrier dysfunction, driven by increased oxidative phosphorylation (OXPHOS) activity that leads to tissue hypoxia, contributes to the progression of cirrhosis, particularly impacting the upper intestine. This study explores the interplay between intestinal OXPHOS, gut microbiota changes, and the effects of fecal microbiota transplant (FMT) in cirrhotic patients. We investigated 32 age-matched men across three groups: healthy controls, compensated cirrhosis, and decompensated cirrhosis. Each underwent endoscopy with duodenal and ascending colon biopsies. Subsequently, in a follow-up study, nine patients with hepatic encephalopathy, previously enrolled in a randomized controlled trial for FMT capsules, underwent repeat pre and post-FMT upper endoscopy. Our bioinformatics analysis highlighted a significant upregulation of nuclear-encoded OXPHOS genes in both intestinal regions of cirrhosis patients compared to controls, with further dysregulation in the decompensated group. We also observed a strong correlation between shifts in gut microbiota composition, Model for End-Stage Liver Disease (MELD) scores, and OXPHOS activity. Following FMT, patients displayed a significant reduction in OXPHOS gene expression in the duodenum, suggesting that FMT may restore intestinal barrier function and offer a therapeutic avenue to mitigate liver disease progression. The findings indicate that managing intestinal OXPHOS and microbiota through FMT could be relevant in modulating microbially-based therapies.
Project description:Intracerebral hemorrhage (ICH) induces alterations in the gut microbiota composition, significantly impacting neuroinflammation post-ICH. However, the impact of gut microbiota absence on neuroinflammation following ICH-induced brain injury remain unexplored. Here, we observed that the gut microbiota absence was associated with reduced neuroinflammation, alleviated neurological dysfunction, and mitigated gut barrier dysfunction post-ICH. In contrast, recolonization of microbiota from ICH-induced SPF mice by transplantation of fecal microbiota (FMT) exacerbated brain injury and gut impairment post-ICH. Additionally, microglia with transcriptional changes mediated the protective effects of gut microbiota absence on brain injury, with Apoe emerging as a hub gene. Subsequently, Apoe deficiency in peri-hematomal microglia was associated with improved brain injury. Finally, we revealed that gut microbiota influence brain injury and gut impairment via gut-derived short-chain fatty acids (SCFA).
Project description:Colorectal cancer (CRC) is closely related to gut dysbiosis. We investigated the effects of imbalanced gut microbiota on the progression of intestinal adenoma in Apcmin/+ mice model using fecal microbiota transplantation (FMT). Administration of feces from CRC patients increased tumor proliferation and decreased apoptosis in tumor cells. Abnormal expression of genes related to Wnt-protein binding and lipid metabolic process was observed.
Project description:Hematopoietic stem cell (HSC) aging is accompanied by hematopoietic reconstitution dysfunction, including loss of regenerative and engraftment ability, myeloid differentiation bias and elevated risks of hematopoietic malignancies. Gut microbiota, a key regulator of host health and immunity, has been recently reported to impact hematopoiesis. However, there is currently no empirical evidence elucidating the direct impact of gut microbiome on aging hematopoiesis. To assess these potential effects, we performed fecal microbiota transplantation (FMT) from young mice to aged mice and observed an increment in both the absolute number and the engraftment ability of HSCs. Single cell RNA sequencing depicted overall transcriptional changes of HSCs as well as the bone marrow microenvironment and indicated that gut microbiota from young mice enhanced cell cycle activity of HSCs, attenuated canonical inflammatory signals and mitigated inflammation-associated phenotypes in aging hematopoiesis. Integrated microbiome-metabolome analysis uncovered that FMT reshaped gut microbiota construction and metabolite landscape, while the administration of Lachnospiraceae and tryptophan-associated metabolites promoted the recovery of hematopoiesis and rejuvenated aged HSCs. Together, our results highlighted the paramount importance of the gut microbiota in HSC aging and provided a strong rationale to limit hematopoietic exhaustion and treat hematologic disorders.