Project description:Transcriptome profile of the Hydrogenobacter thermophilus TK-6 cells aerobically or anaerobically grown on ammonium, nitrate, or mix of ammonium and nitrate was determined by NimbleGen Eukaryotic Expression array (4x72K).
Project description:The heme group in paramagnetic (S = 1/2) ferricytochromes c typically displays a markedly asymmetric distribution of unpaired electron spin density among the heme pyrrole beta substituents. This asymmetry is determined by the orientations of the heme axial ligands, histidine and methionine. One exception to this is ferricytochrome c(552) from Hydrogenobacter thermophilus, which has similar amounts of unpaired electron spin density at the beta substituents on all four heme pyrroles. Here, determination of the orientation of the magnetic axes and analysis of NMR line shapes for H. thermophilus ferricytochrome c(552) is performed. These data reveal that the unusual electronic structure for this protein is a result of fluxionality of the heme axial methionine. It is proposed that the ligand undergoes inversion at the pyramidal sulfur, and the rapid interconversion between two diastereomeric forms results in the unusual heme electronic structure. Thus a fluxional process for a metal-bound amino acid side chain has now been identified.
Project description:Hydrogenobacter thermophilus Kawasumi et al. 1984 is the type species of the genus Hydrogenobacter. H. thermophilus was the first obligate autotrophic organism reported among aerobic hydrogen-oxidizing bacteria. Strain TK-6(T) is of interest because of the unusually efficient hydrogen-oxidizing ability of this strain, which results in a faster generation time compared to other autotrophs. It is also able to grow anaerobically using nitrate as an electron acceptor when molecular hydrogen is used as the energy source, and able to aerobically fix CO(2)via the reductive tricarboxylic acid cycle. This is the fifth completed genome sequence in the family Aquificaceae, and the second genome sequence determined from a strain derived from the original isolate. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 1,742,932 bp long genome with its 1,899 protein-coding and 49 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Project description:Background: Ependymomas encompass multiple, clinically relevant tumor types based on localization and molecular profiles. Although tumors of the methylation class “spinal ependymoma” (SP-EPN) represent the most common intramedullary neoplasms in children and adults, their developmental origin is ill-defined, molecular data are scarce, and the potential heterogeneity within SP-EPN remains unexplored. The only known recurrent genetic events in SP-EPN are loss of chromosome 22q and NF2 mutations, but neither types and frequency of these alterations nor their clinical meaning have been described in a large, epigenetically defined series. Methods: We mapped SP-EPN transcriptomes (n=76) to developmental atlases of the developing and adult spinal cord to uncover potential developmental origins of these tumors. In addition, transcriptomic, epigenetic (n=234), genetic (n=140), and clinical analyses (n=115) were integrated for a detailed overview on this entity. Results: Integration of transcriptomic ependymoma data with single-cell atlases of the spinal cord identified mature adult ependymal cells to display highest similarities to SP-EPN. Unsupervised hierarchical clustering of tumor data together with integrated analysis of methylation profiles identified two molecular SP-EPN subtypes. Subtype 1 predominantly contained NF2 wild type sequences with regular NF2 expression but revealed more extensive copy number alterations. Subtype 2 harbored previously known germline or sporadic NF2 mutations and was NF2-deficient in most cases, more often showed multilocular disease, and demonstrated a significantly reduced progression-free survival. Conclusion: Based on integrated molecular profiling of a large tumor series we identify two distinct SP-EPN subtypes with important implications for genetic counseling, patient surveillance, and drug development priorities.