Project description:World aquaculture production of the Pacific white shrimp (Litopenaeus vannamei) is estimated to account for 80% of the total shrimp produce worldwide. The global demand for shrimp has driven the industry to utilize and rely on semi-intensive and intensive shrimp systems. In the United States, Pacific white shrimp production can take place in semi-intensive earthen ponds, recirculating aquaculture systems (RAS), biofloc technology and green water. In this study, the effects of lowering dissolved oxygen conditions in outdoor green water tanks on global gene expression is examined. Tissue samples from the gill and intestine were collected for gene expression analysis via RNA sequencing. Among all comparisons, RNA sequencing revealed the up-regulation of a single gene: hydroxyacid oxidase 1 gene. The HOA1 gene was found to be 7-fold higher in the intestine sample at the medium aeration level compare to that of the high (control) level. The HAO1 gene, also known as glycolate oxidase 1 (GOX1) is a gene related to the 2-hydroxyacid oxidase enzyme that is part of the oxidoreductase family and plays a role in glyoxylate and dicarboxylate metabolism. The identification of a single differentially expressed gene across all analyzed samples suggests that Pacific white shrimp exposed to lowering dissolved oxygen set points does not induce global changes in gene expression at these levels.
2025-07-17 | GSE281217 | GEO
Project description:environmental microbiotas in shrimp ponds
| PRJNA474444 | ENA
Project description:Effects of shrimp on eutrophic ponds
| PRJNA1208684 | ENA
Project description:Diagnosis of Dieback disease in Egyptian mango using nanopore-generated metagenomic data
Project description:To present, the only known inv*olvement of the gills in the immune response of shrimp is solely assisting the hemocytes in filtering out the harmful factors. This global expression of novel genes revealed several immune-related genes specifically expressed in high amounts only in gills. This data provide new insights on the immune defense of shrimp.
Project description:The phenomenon of trained immunity, which facilitates vaccine development for disease control, has been identified in shrimp; however, the mechanism remains elusive. In the present study, we found that histone H3K27 acetylation (H3K27ac) mediated by the lysine acetyltransferase KAT8 plays an important role in preventing white spot syndrome virus (WSSV) infection in the shrimp Marsupenaeus japonicus. We then successfully established a model of trained immunity via the use of UV-inactivated WSSV to explore the underlying mechanism(s) in shrimp. In UV-WSSV-trained shrimp, the glycolysis and tricarboxylic acid (TCA) cycle metabolic pathways were enhanced and acetyl-CoA concentrations were increased. As the acetyl group donor, acetyl-CoA promotes KAT8 activity to increase H3K27 acetylation. H3K27ac is deposited at the promoter region of the transcription factor Dorsal to facilitate its expression and then Dorsal promotes the expression of an interferon-like cytokine, Vago5, and antimicrobial peptides that act against WSSV infection. H3K27ac is also deposited at the promoter region of hexokinase 2 and isocitrate dehydrogenase, which positively regulates glycolysis and the TCA cycle in a feedforward manner. Our results reveal a novel mechanism of trained immunity induced by UV-WSSV in shrimp and provide a theoretical basis for the development of antiviral vaccines for disease control in shrimp aquaculture.
2025-08-01 | GSE273689 | GEO
Project description:Studying Intestinal Microbiomes by Nanopore Sequencing
| PRJNA911758 | ENA
Project description:Microbiome of size-fractionated bioflocs from shrimp ponds
| PRJNA432835 | ENA
Project description:intestine and sediment samples of shrimp culture ponds