Project description:World aquaculture production of the Pacific white shrimp (Litopenaeus vannamei) is estimated to account for 80% of the total shrimp produce worldwide. The global demand for shrimp has driven the industry to utilize and rely on semi-intensive and intensive shrimp systems. In the United States, Pacific white shrimp production can take place in semi-intensive earthen ponds, recirculating aquaculture systems (RAS), biofloc technology and green water. In this study, the effects of lowering dissolved oxygen conditions in outdoor green water tanks on global gene expression is examined. Tissue samples from the gill and intestine were collected for gene expression analysis via RNA sequencing. Among all comparisons, RNA sequencing revealed the up-regulation of a single gene: hydroxyacid oxidase 1 gene. The HOA1 gene was found to be 7-fold higher in the intestine sample at the medium aeration level compare to that of the high (control) level. The HAO1 gene, also known as glycolate oxidase 1 (GOX1) is a gene related to the 2-hydroxyacid oxidase enzyme that is part of the oxidoreductase family and plays a role in glyoxylate and dicarboxylate metabolism. The identification of a single differentially expressed gene across all analyzed samples suggests that Pacific white shrimp exposed to lowering dissolved oxygen set points does not induce global changes in gene expression at these levels.
2025-07-17 | GSE281217 | GEO
Project description:environmental microbiotas in shrimp ponds
| PRJNA474444 | ENA
Project description:Effects of shrimp on eutrophic ponds
| PRJNA1208684 | ENA
Project description:Diagnosis of Dieback disease in Egyptian mango using nanopore-generated metagenomic data
Project description:To present, the only known inv*olvement of the gills in the immune response of shrimp is solely assisting the hemocytes in filtering out the harmful factors. This global expression of novel genes revealed several immune-related genes specifically expressed in high amounts only in gills. This data provide new insights on the immune defense of shrimp.
Project description:5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are modified versions of cytosine in DNA with roles in regulating gene expression. Using whole genomic DNA from mouse cerebellum, we have benchmarked 5mC and 5hmC detection by Oxford Nanopore Technologies sequencing against other standard techniques. In addition, we assessed the ability of duplex base-calling to study strand asymmetric modification. Nanopore detection of 5mC and 5hmC is accurate relative to compared techniques and opens new means of studying these modifications. Strand asymmetric modification is widespread across the genome but reduced at imprinting control regions and CTCF binding sites in mouse cerebellum. This study demonstrates the unique ability of nanopore sequencing to improve the resolution and detail of cytosine modification mapping.
Project description:5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are modified versions of cytosine in DNA with roles in regulating gene expression. Using whole genomic DNA from mouse cerebellum, we benchmark 5mC and 5hmC detection by Oxford Nanopore Technologies sequencing against other standard techniques. In addition, we assess the ability of duplex base-calling to study strand asymmetric modification. Nanopore detection of 5mC and 5hmC is accurate relative to compared techniques and opens new means of studying these modifications. Strand asymmetric modification is widespread across the genome but reduced at imprinting control regions and CTCF binding sites in mouse cerebellum. Here we demonstrate the unique ability of nanopore sequencing to improve the resolution and detail of cytosine modification mapping.
2025-02-03 | GSE288331 | GEO
Project description:intestine and sediment samples of shrimp culture ponds