Project description:Introduction: microRNAs are promising candidate breast cancer biomarkers due to their cancer-specific expression profiles. However, efforts to develop circulating breast cancer biomarkers are challenged by the heterogeneity of microRNAs in the blood. To overcome this challenge, we aimed to develop a molecular profile of microRNAs specifically secreted from breast cancer cells. Our first step towards this direction relates to capturing and analyzing the contents of exosomes, which are small secretory vesicles that selectively encapsulate microRNAs indicative of their cell of origin. To our knowledge, circulating exosome microRNAs have not been well evaluated as biomarkers for breast cancer diagnosis or monitoring. Methods: Exosomes were collected from the conditioned media of human breast cancer cell lines, mouse plasma of patient-derived orthotopic xenograft models (PDX), and human plasma samples. Exosomes were verified by electron microscopy, nanoparticle tracking analysis, and western blot. Cellular and exosome microRNAs from breast cancer cell lines were profiled by next-generation small RNA sequencing. Plasma exosome microRNA expression was analyzed by qRT-PCR analysis. Results: Small RNA sequencing and qRT-PCR analysis showed that several microRNAs are selectively encapsulated or highly enriched in breast cancer exosomes. Importantly, the selectively enriched exosome microRNA, human miR-1246, was detected at significantly higher levels in exosomes isolated from PDX mouse plasma, indicating that tumor exosome microRNAs are released into the circulation and can serve as plasma biomarkers for breast cancer. This observation was extended to human plasma samples where miR-1246 and miR-21 were detected at significantly higher levels in the plasma exosomes of 16 breast cancer patients as compared to the plasma exosomes of healthy control subjects. Receiver Operating Characteristic (ROC) curve analysis indicated that the combination of plasma exosome miR-1246 and miR-21 levels is a better indicator of breast cancer than their individual levels. Conclusions: Our results demonstrate that certain microRNA species, such as miR-21 and miR-1246, are selectively enriched in human breast cancer exosomes and significantly elevated in the plasma of breast cancer patients. These findings indicate a potential new strategy to selectively analyze plasma breast cancer microRNAs indicative of the presence of breast cancer.
Project description:Background: We and others have previously demonstrated the potential for circulating exosome microRNAs to aid in disease diagnosis. In this study, we sought the possible utility of serum exosome microRNAs as biomarkers for disease activity in multiple sclerosis patients in response to fingolimod therapy. We studied patients with relapsing-remitting multiple sclerosis prior to and 6 months after treatment with fingolimod. Methods: Disease activity was determined using gadolinium-enhanced magnetic resonance imaging. Serum exosome microRNAs were profiled using next-generation sequencing. Data were analysed using univariate/multivariate modelling and machine learning to determine microRNA signatures with predictive utility. Results: we identified 15 individual miRNAs that were differentially expressed in serum exosomes from post-treatment patients with active versus quiescent disease. The targets of these microRNAs clustered in ontologies related to the immune and nervous systems, and signal transduction. While the power of individual microRNAs to predict disease status post-fingolimod was modest (average 77%, range 65 to 91%), several combinations of 2 or 3 miRNAs were able to distinguish active from quiescent disease with greater than 90% accuracy. Further stratification of patients identified additional microRNAs associated with stable remission, and a positive response to fingolimod in patients with active disease prior to treatment. Conclusions: Overall, these data underscore the value of serum exosome microRNA signatures as non-invasive biomarkers of disease in multiple sclerosis and suggest they may be used to predict response to fingolimod in future clinical practice. Additionally, these data suggest that fingolimod may have mechanisms of action beyond its known functions.
Project description:MicroRNAs are important cellular regulators and their dysfunctions are associated with various disease. miR-371/372/373 was found co-regulated in HBV-producing HepG2.2.15 cells when compared to its non-HBV producing maternal HepG2 cells. To obtain a glimpse of the potential influence of the enforced miR-371-372-373 cluster in HepG2 gene expression, a two-color Capitalbio 70-mer oligo microarray platform, which contained 21,329 well-characterized human gene probes, was used to identify the differentially expressed genes between miR-371-372-373-HepG2 and mock-HepG2 in two independent biological replicate. miR-371-372-373-HepG2 vs. mock-HepG2
Project description:Compare microRNAs expression when HepG2 cells stably expressing HBx protein with HepG2 control cells expressing baterial chloramphenicol acetyltransferase Compare microRNAs expression when HepG2 cells stably expressing URG11 protein with HepG2 control cells expressing baterial chloramphenicol acetyltransferase microRNA expression in Cells expressing HBx vs. Cell without HBx microRNA expression in Cells expressing URG11 vs. Cell without URG11
Project description:This study is to identify urinary exosome microRNAs (miRNAs) that are unique to premature ovarian insufficiency (POI) with and without Turner syndrome and to use them as diagnostic markers for POI patients. We examined the miRNAexpression profile in urine exosomes from POI patients with and without Turner syndrome.