Project description:Expression diversity of P. ramorum isolates belonging to the NA1 clonal lineage growing on solid CV8 was examined. It was found that although all the analyzed isolates belonged to a single clonal lineage, expression patterns were distinctive between isolates originating from coast live oak and California bay laurel. Global expression patterns of 13 isolates originating from coastal live oak and California bay laurel was investigated. No biological replicates were generated. The sequenced strain Pr102 was included. Gene models Phytophthora ramorum v1.0 were used to construct NimbleGen 72K x4 custom arrays.
Project description:Expression diversity of P. ramorum isolates belonging to the NA1 clonal lineage growing on solid CV8 was examined. It was found that although all the analyzed isolates belonged to a single clonal lineage, expression patterns were distinctive between isolates originating from coast live oak and California bay laurel.
Project description:This work aimed to characterize the molecular adaptations occurring in cork oak (Quercus suber) stems in adaptation to drought, and identify key genetic pathways regulating phellem development. One-year-old cork oak plants were grown for additional 6 months under well-watered (WW) or water-deficit (WD) conditions and main stems were targeted for transcriptomic analysis. WD had a negative impact on secondary growth, decreasing the activity of the vascular cambium and phellogen. Following a tissue-specific approach, we analyzed the transcriptional changes imposed by WD in phellem (outer bark), inner bark, and xylem, and found a global downregulation of genes related to cell division, cell wall biogenesis, lignin and/or suberin biosynthesis. Phellem and phloem showed a concerted upregulation of photosynthesis-related genes, suggesting a determinant role of stem photosynthesis in the adaptation of young plants to long-term drought. The data gathered will be important to further harness the diverse genetic background of this species for the development of optimized management practices.
Project description:Identification of genes involved in the regulation of taproot and lateral root growth in Quercus robur seedlings under drought stress and well-watered conditions. Genes involved in the regulation of taproot and lateral root growth in Quercus robur seedlings were identified using RNA-seq, miRNA-seq, and degradome-seq. The analysis focused on the gene expression, miRNA regulation, and mRNA degradation profiles of taproots and lateral roots under both drought stress and well-watered conditions. Key genes and their regulatory miRNAs were identified, along with the role of mRNA degradation pathways in response to stress, providing insights into the molecular mechanisms controlling root growth and development in oak seedlings under varying water availability.
Project description:Identification of genes involved in the regulation of taproot and lateral root growth in Quercus robur seedlings under drought stress and well-watered conditions. Genes involved in the regulation of taproot and lateral root growth in Quercus robur seedlings were identified using RNA-seq, miRNA-seq, and degradome-seq. The analysis focused on the gene expression, miRNA regulation, and mRNA degradation profiles of taproots and lateral roots under both drought stress and well-watered conditions. Key genes and their regulatory miRNAs were identified, along with the role of mRNA degradation pathways in response to stress, providing insights into the molecular mechanisms controlling root growth and development in oak seedlings under varying water availability.