Project description:Candida glabrata is a human-associated opportunistic fungal pathogen. It shares its niche with Lactobacillus spp. in the gastrointestinal and vaginal tract. In fact, Lactobacillus species are thought to competitively prevent Candida overgrowth. We investigated the molecular aspects of this antifungal effect by analyzing the interaction of C. glabrata strains with Limosilactobacillus fermentum. From a collection of clinical C. glabrata isolates, we identified strains with different sensitivities to L. fermentum in coculture. We analyzed the variation of their expression pattern to isolate the specific response to L. fermentum. C. glabrata-L. fermentum coculture induced genes associated with ergosterol biosynthesis, weak acid stress, and drug/chemical stress. L. fermentum coculture depleted C. glabrata ergosterol. The reduction of ergosterol was dependent on the Lactobacillus species, even in coculture with different Candida species. We found a similar ergosterol-depleting effect with other lactobacillus strains (Lactobacillus crispatus and Lactobacillus rhamosus) on Candida albicans, Candida tropicalis, and Candida krusei. The addition of ergosterol improved C. glabrata growth in the coculture. Blocking ergosterol synthesis with fluconazole increased the susceptibility against L. fermentum, which was again mitigated by the addition of ergosterol. In accordance, a C. glabrata Derg11 mutant, defective in ergosterol biosynthesis, was highly sensitive to L. fermentum. In conclusion, our analysis indicates an unexpected direct function of ergosterol for C. glabrata proliferation in coculture with L. fermentum.
Project description:Fermented goat milk (FGM) with Lactobacillus delbrueckii subsp. indicus CRL1447 and supplemented with different mixes of lactobacilli strains (Mix1: Limosilactobacillus fermentum CRL1446 + Lactiplantibacillus paraplantarum CRL1449 + Lactiplantibacillus paraplantarum CRL1472; Mix2: CRL1446 + CRL1449; Mix3: CRL1446 + CRL1472; and Mix4: CRL1449 + CRL1472) was administered to mice fed a high-fat diet. Proteomics data show that high-fat diet generally upregulates proteins involved in fatty acid oxidation and downregulates proteins taking part in lipid synthesis, whereas the administration of FGM+Mix3 positively modulates the hepatic proteomic profile.