Project description:Telenomus remus Nixon, 1937 is an important parasitoid of lepidopterans. We sequenced the mitochondrial genome of T. remus, 15,500 bp in size, and possessed all 37 typical mitochondrial genes. A few tRNAs show gene arrangements compared with the ancestral gene order, mainly involving in the four tRNA clusters (E-C-Y-Q-I-A, D-K, N-F-S1-R, and M-V). The nucleotide sequences of 13 protein-coding genes of this sequence and another seven species from Platygastridae were used for phylogenetic analysis by MrBayes, with two species from Cynipoidea as an outgroup. The topology demonstrated that T. remus was most closely related to Telenomus sp.
Project description:Near isogenic wheat lines(NILs), differing in the presence of both or none of the FHB-resistance QTL Fhb1 and Qfhs.ifa-5A, have been sequenced using Illumina HiSeq2000 under disease pressure (3, 6, 12, 24, 36, 48 hai) as well as with mock-inoculation, to discern transcriptional differences induced by Fusarium graminearum. The NILs are BC5F2 lines generated from the Mexican Spring wheat line CM-82036, the resistance QTL donor line, as recurrent background and the susceptible German Spring wheat line Remus as the donor of the susceptible QTL alleles.
Project description:Euschistus heros (Fabricius) (Hemiptera: Pentatomidae) primarily attack the pods and seeds of soybean plants, causing severe economic losses in Neotropical Region, and chemical control is essential to avoid these losses. Thus, insecticides more effective against this pest and less toxic to Telenomus podisi Ashmead (Hymenoptera: Platygastridae) - the main biological control agent of E. heros - should be used. In this report, we studied the differential acute impacts of pesticides used in Brazilian soybean against E. heros and T. podisi and evaluated their sublethal effects on the parasitoid to identify effective pesticides towards the pest with less harmful effect to the natural enemy. The LC50 of the insecticides to E. heros ranged from 1.20 to 533.74 ng a.i./cm2; the order of toxicity was thiamethoxam + lambda-cyhalothrin > acetamiprid + fenpropathrin > zeta-cypermethrin > acephate > imidacloprid. All pesticides were classified as slightly to moderately toxic to T. podisi based on the risk quotient. The exposure of T. podisi females to imidacloprid and the insecticide pre-formulated mixtures reduced the emergence of the offspring parasitoids by up to 40% whereas zeta-cypermethrin and the insecticides pre-formulated mixtures reduced offspring survival. The preferred order of choice of insecticides for the management of E. heros according to agronomic, toxicological, and environmental feasibility was the following: thiamethoxam + lambda-cyhalothrin > zeta-cypermethrin > acetamiprid + fenpropathrin > acephate > imidacloprid. Our study provides important and pioneer information to select insecticides for effective control of E. heros with lower impacts on T. podisi.