Project description:Brown planthopper (BPH; Nilaparvata lugens) is a phloem feeding insect which is one of the most serious threats to rice crops in many countries throughout Asia. 1H NMR spectroscopy, combined with chemometrics, was used to analyze the polar metabolome from leaf extracts of Thai Jasmine rice (brown planthopper (BPH)-susceptible KD) and its BPH resistant isogenic lines (BPH-resistant IL7 and BPH-resistant+ IL308 varieties) with and without BPH infestation at various time points (days 1, 2, 3, 4 and 8). Physiological changes of the rice isogenic lines were different based on the quantitative trait loci of BPH resistance. Multivariate models were capable of distinguishing between the susceptible and the resistant rice varieties throughout the infestation. The concentration of 10 metabolites were significantly altered (p < 0.05) between the infested and the control groups of each examined rice variety. Metabolic pathway analysis suggested that BPH infestation could perturb transamination during the early stages of infestation (days 1–3) for all rice varieties. In addition, the IL7 and IL308 varieties responded earlier (day 3) than the KD variety (day 8) by perturbing amino acid metabolism, shikimate and gluconeogenesis pathways. By day 8 of the infestation, the KD cultivar responded by activating the amino acid-mediated-de novo pathway whereas the IL308 variety activated the purine and pyrimidine compound-mediated-salvage pathway for nucleotide biosynthesis. This study has identified, for the first time, several potential metabolic pathways for acclimatization and defense mechanisms against BPH infestation. These findings provide a valuable, first insight into BPH resistance mechanisms in Thai Jasmine rice.
Project description:The rice gene SUB1A-1 confers flooding tolerance restricting shoot growth during submergence. Rice with SUB1A also show more rapid recovery after submergence ends, but mechanisms by which SUB1A improves recovery from submergence had not been examined. In this study, the transcriptome was sequenced at five time points over a 24 hour submergence recovery period in near-isogenic rice genotypes with and without SUB1A.
Project description:Using the HiSeqTM 2000 sequencing platform, the anther transcriptome of photo thermo sensitive genic male sterile lines (PTGMS) rice Y58S and P64S (Peiâai 64S) were analyzed at the fertility sensitive stage under cold stress.These datas would be most beneficial for further studies investigating the molecular mechanisms of rice responses to cold stress.
Project description:5 leaves old rice plantlets were infected with Magnaporthe grisea spores and zero, two hours and twenty four houres after infection samples were collected
Project description:In this study, we analyzed the early response of two rice cultivars to infection by RSV (Rice stripe virus) and its carrier at the transcriptome level using next-generation deep-sequencing techniques. We investigated the alteration in gene expression between a disease-resistant cultivar and a susceptible cultivar before and after inoculation with RSV by co-culturing with Laodelphax striatellus for 48 h. Our study provides insight at the molecular level into the mechanism of development of rice stripe disease, which contributes to our understanding of the rice-RSV interaction.
Project description:In order to identify new miRNAs, NAT-siRNAs and possibly abiotic-stress regulated small RNAs in rice, three small RNA libraries were constructed from control rice seedlings and seedlings exposed to drought or salt stress, and then subjected to pyrosequencing.
Project description:In this study, we examined the transcriptome dynamics within the matured fully expanded rice leaf and used strand-specific RNA sequencing to generate a comprehensive transcriptome dataset for the mature rice leaf. The rice Nipponbare (Oryza sativa l. japonica) seedlings were grown in the greenhouse. About 20 days after planting, the fully opened 4th leaves was cut it into seven 3-cm segments, from bottom to tip and labeled as sections 1 to 7, respectively. The tissues were immediately frozen in liquid nitrogen for total RNA extraction. Two biological replicates were collected for each section. Note: All samples in SRA were assigned the same sample accession (SRS685294). This is incorrect as there are different samples, hence âSource Nameâ was replaced with new values. Comment[ENA_SAMPLE] contains the original SRA sample accessions.
Project description:LongSAGE library in this series are from 'Whole Genome Analysis of Pathogen-Host Recognition and Subsequent Responses in the Rice Blast Patho-System' project. This work is supported by NSF-PGRP #0115642. Keywords: other