Project description:We performed single-cell RNA-seq of human iPSC-derived long-term self-renewing neural epithelial stem cells (hiPSC-lt-NES cells) using Quartz-seq methods to characterize cellular heterogeneity .
Project description:Extracellular Vesicles (EV) are an attractive therapy to boost cardiac regeneration. Nevertheless, identification of EV and corresponding cell platform(s) suitable for therapeutic application, is still a challenge. Here, we isolated EV from key stages of the human induced pluripotent stem cell-cardiomyocyte (hiPSC-CM) differentiation and maturation, i.e., from hiPSC (hiPSC-EV), cardiac progenitors (CPC-EV), immature (CMi-EV) and mature (CMm-EV) cardiomyocytes, with the aim of identifying a promising cell biofactory for EV production, and pinpoint the genetic signatures of bioactive EV. EV were characterized in terms of expression of specific markers, yield, and size. Bioactivity was assessed in human umbilical vein endothelial cells (HUVEC) and hiPSC-CM. Small RNA-Seq was performed to identify the differentially expressed miRNA in the four EV groups. Bioactivity assays showed increased tube formation and migration in HUVEC treated with hiPSC-EV compared to EV from committed cell populations. hiPSC-EV also significantly increased hiPSC-CM proliferation. Global miRNA expression profiles corroborated an EV-miRNA pattern indicative of stem cell to cardiomyocyte specification. A stemness maintenance miRNA cluster upregulated in hiPSC-EV was found to target the PTEN/PI3K/AKT pathway. Moreover, hiPSC-EV treatment mediated PTEN suppression and increased AKT phosphorylation. Overall, our findings validate hiPSC as suitable cell biofactories for EV production for cardiac regenerative applications.
Project description:Schizophrenia is a debilitating neurological disorder for which no cure exists. Few defining characteristics of schizophrenic neurons have been identified and the molecular mechanisms responsible for schizophrenia are not well understood, in part due to the lack of patient material for study. Human induced pluripotent stem cells (hiPSCs) offer a new strategy for studying schizophrenia. We have created the first cell-based human model of a complex genetic psychiatric disease by generating hiPSCs from schizophrenic patients and subsequently differentiating these cells to hiPSC-derived neurons in vitro. Schizophrenic hiPSC-derived neurons showed diminished neuronal connectivity in conjunction with decreased neurite number, PSD95-protein levels and glutamate receptor expression. Gene expression profiles of schizophrenic hiPSC-derived neurons identified altered expression of many components of the cAMP and WNT signaling pathways. Key cellular and molecular elements of the schizophrenic phenotype were ameliorated following treatment of schizophrenic hiPSC-derived neurons with the antipsychotic loxapine. 3 independent differentiations (biological replicates) for each of four control and four schizophrenic patients were analyzed.
Project description:Energy metabolism is a key aspect of cardiomyocyte biology. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are a promising tool for biomedical application, but they are immature and have not undergone metabolic shift related to early postnatal development. Cultivation of hiPSC-CM in 3D engineered heart tissue (EHT) format leads to morphological maturation. This study compared the mitochondrial and metabolic state of hiPSC-CM in standard 2D culture and the EHT format and determined the influence of contractile activity. HiPSC-CM in EHTs showed ~2-fold higher number of mitochondria (electron microscopy), mitochondrial mass (mitotracker), DNA (Mt-ND1, Mt-ND2), and protein abundance (proteome) than in 2D culture. While hiPSC-CM exhibited the principal ability to use glucose, lactate and fatty acids as energy substrates irrespective of culture format, hiPSC-CM in 3D performed more oxidation of glucose, lactate and fatty acid, and less anaerobic glycolysis. The increase in mitochondrial mass and DNA in 3D was diminished by pharmacological inhibition of contractile force, suggesting that contractile work participates in mitochondrial development hiPSC-CM. In conclusion, contractile work in the EHT format contributes to metabolic maturation of hiPSC-CM.
Project description:Human induced Pluripotent Stem Cell-derived cardiomyocytes (hiPSC-CMs) are increasingly used to identify potential factors capable of inducing endogenous cardiomyocyte proliferation to regenerate the injured heart. L-type calcium channel blockers have previously been identified as a class of factors capable of inducing matured hiPSC-CMs to proliferate. However, the mechanism by which L-type calcium channel blockers promote hiPSC-CM proliferation remains unclear. Here we provide evidence that matured hiPSC-CMs possess plasticity to undergo dematuration in response to certain pharmacological compounds. Consistent with primary cardiomyocyte maturation during perinatal development, we found that centrosome disassembly occurs in hiPSC-CMs during plate-based, temporal, maturation. A small molecule screen identified Nitrendipine, an L-type calcium channel blocker, and 1-NA-PP1, a Src kinase inhibitor, as factors capable of inducing centrosome reassembly in a subpopulation of hiPSC-CMs. Furthermore, centrosome-positive hiPSC-CMs were more likely to exhibit cell cycle activity than centrosome-negative hiPSC-CMs. In contrast, neither Nitrendipine or 1-NA-PP1 induced centrosome reassembly, or cell cycle activity, in neonatal rat ventricular myocytes (NRVMs). Differential bulk transcriptome analysis indicated that matured hiPSC-CMs, but not NRVMs, treated with Nitrendipine or 1-NA-PP1 undergo dematuration. ScRNA transcriptome analysis supported that matured hiPSC-CMs treated with either Nitrendipine or 1-NA-PP1 undergo dematuration. Collectively, our results indicate that matured hiPSC-CMs, but not primary NRVMs, possess plasticity to undergo dematuration in response to certain pharmacological compounds such as L-type calcium channel blockers and Src-kinase inhibitors. This study shows that once mature, hiPSC-CMs may not maintain their maturity under experimental conditions and thus may have implications for experimental systems where the state of hiPSC-CM maturation is relevant.
Project description:we identified the differentially expressed genes (DEGs) in hiPSC-NPCs exposed to conditioned media from hiPSC-NPCs transfected with hepatocyte growth factor (HGF-NPCs) by transcriptome analysis.
Project description:we identified the differentially expressed genes (DEGs) in hiPSC-NPCs exposed to conditioned media from hiPSC-NPCs transfected with hepatocyte growth factor (HGF-NPCs) by transcriptome analysis.