Project description:Traditional vaccines are difficult to deploy against the diverse antibiotic-resistant, nosocomial pathogens that cause Hospital Acquired Infections (HAIs). We developed a unique, protein-free vaccine to present antibiotic-resistant HAIs. This vaccine protected mice from invasive infections caused by methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecalis, multidrug resistant Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa, Rhizopus delemar, and Candida albicans. Protection persisted even in neutropenic mice infected with A. baumannii or R. delemar. Protection was already apparent after 24 hours and lasted for up to 21 days after a single dose, with a second dose restoring efficacy. Protection persisted without lymphocytes but was abrogated with macrophages depletion. This vaccine induced trained immunity by altering the macrophage epigenetic landscape and the inflammatory response to infection.
Project description:The emergence of colistin resistance in carbapenem-resistant and extended-spectrum ß-lactamase (ESBL)-producing bacteria is a significant threat to human health, and new treatment strategies are urgently required. Here we investigated the ability of the safe-for-human use ionophore PBT2 to restore antibiotic sensitivity in several polymyxin-resistant, ESBL-producing, carbapenem resistant Gram-negative human pathogens. PBT2 was observed to resensitize Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa to last-resort polymyxin class antibiotics, including a ‘next generation’ polymyxin derivative, FADDI-287. To gain additional insight into the potential mechanism of action of PBT2, we analyzed the transcriptome of K. pneumoniae and E. coli in the presence of sub-inhibitory concentrations of PBT2. Treatment with PBT2 was associated with multiple stress responses in both K. pneumoniae and E. coli. Significant changes in the transcription of transition metal ion homeostasis genes were observed in both strains.
Project description:The emergence of polymyxin resistance in carbapenem-resistant and extended-spectrum -lactamase (ESBL)-producing bacteria is a critical threat to human health, and new treatment strategies are urgently required. Here, we investigated the ability of the safe-for-human use ionophore PBT2 to restore antibiotic sensitivity in polymyxin-resistant, ESBL-producing, carbapenem-resistant Gram-negative human pathogens. PBT2 was observed to resensitize Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii and Pseudomonas aeruginosa to last-resort polymyxin class antibiotics, including the less-toxic next-generation polymyxin derivative, FADDI-287. We were unable to select for mutants resistant to PBT2 + FADDI-287 in polymyxin resistant E. coli containing a plasmid-borne mcr-1 gene or K. pneumoniae carrying a chromosomal mgrB mutation. Using a highly invasive K. pneumoniae strain engineered for polymyxin resistance through mgrB mutation, we successfully demonstrated the efficacy of PBT2 + FADDI-287 in vivo for the treatment of Gram-negative sepsis. These data present a new treatment modality to break antibiotic resistance in high priority polymyxin-resistant Gram-negative pathogens.
Project description:The interactions between Gram-negative respiratory pathogens and the host environment at the site of infection largely unknown. Pulmonary surfactant serves as an initial point of contact for inhaled bacteria entering the lung and is thought to contain molecular cues that aid colonization and pathogenesis. To gain insight into this ecological transition, we characterized the transcriptional responses of Pseudomonas aeruginosa PA14, Burkholderia thailandensis E264, Klebsiella pneumoniae MGH 78578, and Stenotrophomonas maltophilia K279A exposed to purified pulmonary surfactant (Survanta) through microarrays. This study provides novel insight into the interactions occurring between Gram-negative opportunistic pathogens and the host at an important infection site, and demonstrates the utility of purified lung surfactant preparations for dissecting host-lung pathogen interactions in vitro. The goal of this study was to compare the transcriptional responses of Pseudomonas aeruginosa PA14, Burkholderia thailandensis E264, Klebsiella pneumoniae MGH 78578, and Stenotrophomonas maltophilia K279A exposed to pulmonary surfactant using a custom affymetrix chip designed for their genomes. The goal of this study was to compare the transcriptional responses of Pseudomonas aeruginosa PA14, Burkholderia thailandensis E264, Klebsiella pneumoniae MGH 78578, and Stenotrophomonas maltophilia K279A exposed to pulmonary surfactant using a custom affymetrix chip designed for their genomes.
Project description:The increasing resistence and/or bacterial tolerance to bactericides, such as chlorhexidine, causes worrisome public health problems. Using transcriptomical and microbiological studies, we analysed the molecular mechanisms associated with the adaptation to chlorhexidine in two carbapenemase-producing strains of Klebsiella pneumoniae belonging ST258-KPC3 and ST846-OXA48.
Project description:The study aimed to characterize plasmids mediating carbepenem resistance in Klebsiella pneumoniae in Pretoria, South Africa. We analysed 56 K. pneumoniae isolates collected from academic hospital around Pretoria. Based on phenotypic and molecular results of these isolates, 6 representative isolates were chosen for further analysis using long reads sequencing platform. We observed multidrug resistant phenotype in all these isolates, including resistance to aminoglycosides, tetracycline, phenicol, fosfomycin, floroquinolones, and beta-lactams antibiotics. The blaOXA-48/181 and blaNDM-1/7 were manily the plasmid-mediated carbapenemases responsible for carbapenem resistance in the K. pneumoniae isolates in these academic hospitals. These carbapenemase genes were mainly associated with plasmid replicon groups IncF, IncL/M, IncA/C, and IncX3. This study showed plasmid-mediated carbapenemase spread of blaOXA and blaNDM genes mediated by conjugative plasmids in Pretoria hospitals.
Project description:The spread of antimicrobial resistance (AMR), coupled with the decline in antibiotic development, has become a major public health concern. Recent studies estimate that around 700,000 people die each year from infections caused by multidrug-resistant (MDR) bacteria. This led the WHO to publish the ESKAPEE list of high priority pathogens for AMR, namely Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Escherichia coli. Among these, Gram-negative bacteria (K. pneumoniae, A. baumannii, P. aeruginosa, Enterobacter spp., and E. coli) are particularly overrepresented. This is mainly due to their high propensity to develop multiple resistance mechanisms, in addition to their intrinsic resistance to many antimicrobials, which is due to their membrane composition and the expression of broad-spectrum efflux pumps. One strategy to combat such AMR is the use of drug enhancers that are able to restore the antibacterial activity of poorly active antibiotics. In this context, we demonstrated that the polyamino-isoprenyl enhancer, NV716, efficiently potentiates the antibacterial activity of two families of multi-target Ser/Cys-based enzyme inhibitors, namely the oxadiazolone derivatives (OX) and the Cyclipostins and Cyclophostin analogs (CyC), against Enterobacter cloacae, while remaining inactive against other Gram-negative bacteria. We confirmed that NV716 potentiates some OX & CyC compounds by permeabilizing the outer membrane and thus by increasing the inhibitor accumulation as shown by fluorescence confocal microscopy. By using bio-orthogonal click-chemistry activity-based protein profiling (CC-ABPP) approach coupled to proteomic analysis, we also identified the target proteins of the best OX & CyC inhibitors from E. cloacae lysate, thereby confirming their multi-target nature. Interestingly, 6 of the latter proteins were also captured via CC-ABPP in P. aeruginosa lysate, and are highly conserved in all Gram-negative bacteria. These results provide proof of concept that both OX & CyC, if successfully potentiated, could be used against a wide range of ESKAPEE Gram-negative bacteria.
Project description:The spread of antimicrobial resistance (AMR), coupled with the decline in antibiotic development, has become a major public health concern. Recent studies estimate that around 700,000 people die each year from infections caused by multidrug-resistant (MDR) bacteria. This led the WHO to publish the ESKAPEE list of high priority pathogens for AMR, namely Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Escherichia coli. Among these, Gram-negative bacteria (K. pneumoniae, A. baumannii, P. aeruginosa, Enterobacter spp., and E. coli) are particularly overrepresented. This is mainly due to their high propensity to develop multiple resistance mechanisms, in addition to their intrinsic resistance to many antimicrobials, which is due to their membrane composition and the expression of broad-spectrum efflux pumps. One strategy to combat such AMR is the use of drug enhancers that are able to restore the antibacterial activity of poorly active antibiotics. In this context, we demonstrated that the polyamino-isoprenyl enhancer, NV716, efficiently potentiates the antibacterial activity of two families of multi-target Ser/Cys-based enzyme inhibitors, namely the oxadiazolone derivatives (OX) and the Cyclipostins and Cyclophostin analogs (CyC), against Enterobacter cloacae, while remaining inactive against other Gram-negative bacteria. We confirmed that NV716 potentiates some OX & CyC compounds by permeabilizing the outer membrane and thus by increasing the inhibitor accumulation as shown by fluorescence confocal microscopy. By using bio-orthogonal click-chemistry activity-based protein profiling (CC-ABPP) approach coupled to proteomic analysis, we also identified the target proteins of the best OX & CyC inhibitors from E. cloacae lysate, thereby confirming their multi-target nature. Interestingly, 6 of the latter proteins were also captured via CC-ABPP in P. aeruginosa lysate, and are highly conserved in all Gram-negative bacteria. These results provide proof of concept that both OX & CyC, if successfully potentiated, could be used against a wide range of ESKAPEE Gram-negative bacteria.
Project description:Current therapeutic strategies against bacterial infections focus on reduction of pathogen load using antibiotics; however, stimulation of host tolerance to infection in the presence of pathogens might offer an alternative approach. We used computational transcriptomics and Xenopus laevis embryos to discover infection response pathways, identify potential tolerance inducer drugs, and validate their ability to induce broad tolerance. Xenopus exhibits natural tolerance to Acinetobacter baumanii, Klebsiella pneumoniae, Staphylococcus aureus, and Streptococcus pneumoniae bacteria, whereas Aeromonas hydrophila and Pseudomonas aeruginosa produce lethal infections. Transcriptional profiling led to definition of a 20-gene signature that discriminates between tolerant and susceptible states, as well as identification of a more active tolerance response to gram negative compared to gram positive bacteria. Gene pathways associated with active tolerance in Xenopus, including some involved in metal ion binding and hypoxia, were found to be conserved across species, including mammals, and administration of a metal chelator (deferoxamine) or a HIF-1 agonist (1,4-DPCA) in embryos infected with lethal A. hydrophila increased survival despite high pathogen load. These data demonstrate the value of combining the Xenopus embryo infection model with computational multi-omics analyses for mechanistic discovery and drug repurposing to induce host tolerance to bacterial infections.