Project description:We have isolated and characterized several bacteriophages infecting Pseudomonas aeruginosa distantly related to Felix O1 virus and proposed they form a new subfamily named Felixounavirinae. The infectious cycle of bacteriophages belonging to this subfamily has not been studied yet in terms of gene expression. The present study reports the RNA-Seq analysis of bacteriophage PAK_P3 infecting PAK strain of P. aeruginosa. RNA profile of Host and Phage at 0min, 3.5min and 13 min after infection of Pseudomonas aeruginosa PAK strain with the Pseudomonas phage PAK P3. Three biological replicates for each time point.
Project description:We have isolated and characterized several bacteriophages infecting Pseudomonas aeruginosa distantly related to Felix O1 virus and proposed they form a new subfamily named Felixounavirinae. The infectious cycle of bacteriophages belonging to this subfamily has not been studied yet in terms of gene expression. The present study reports the RNA-Seq analysis of bacteriophage PAK_P3 infecting PAK strain of P. aeruginosa.
Project description:We have isolated and characterized several bacteriophages infecting Pseudomonas aeruginosa distantly related to Felix O1 virus and proposed they form a new subfamily named Felixounavirinae. The infectious cycle of bacteriophages belonging to this subfamily has not been studied yet in terms of gene expression. The present study reports the RNA-Seq analysis of bacteriophage PAK_P4 infecting PAK strain of P. aeruginosa.
Project description:Temperate bacteriophages play a pivotal role in the biology of their bacterial host. Of particular interest are bacteriophages infecting enterohemorrhagic E. coli (EHEC) due to their significant contribution in the pathogenicity of these pathogens, most notably by encoding the key virulence factor of this pathogen, the Shiga toxin. To better understand the role of EHEC phages on the functionality of its host, we isolated eight temperate phages from clinical EHEC isolates and characterized their genomic composition, morphology and receptor targeting. Morphological analysis identified one long-tailed member from the Siphoviridae family, targeting the OmpC receptor for host recognition, while the other seven phages are short-tailed (Podoviridae) and target the essential BamA protein. Genomic characterization revealed significant variation between the long- and short-tailed phages. Five of the eight isolated phages encode the potent Shiga toxin. Comparative analysis displays the typical lambdoid mosaicism, indicative of horizontal gene transfer driving evolution. These findings provide insights into the genetic and morphologic diversity and receptor specificity of EHEC phages, highlighting their role in evolution and pathogenicity of clinical EHEC strains