Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:Aberrant DNA methylation is common in cancer. To associate DNA methylation with gene function, we performed RNAseq upon tumor tissue and matched normal tissues of two ccRCC (clear cell renal cell carcinoma) patients. To quantify 5mC and 5hmC level in each CG site at genome-wide level, we performed BS-seq and TAB-seq upon tumor tissue and matched normal tissues of two ccRCC (clear cell renal cell carcinoma) patients, respectively. mRNA profiles of tumor and matched normal tissues from two ccRCC patients were generated by deep sequencing, using Hiseq 2000. Single-nucleotide-resolution, whole-genome, 5mC and 5hmC profiles of tumor and matched normal tissues from two ccRCC (clear cell renal cell carcinoma) patients were generated by deep sequencing, using Hiseq 2000.
Project description:This clinical trial studies universal screening for deoxyribonucleic acid (DNA) mismatch repair deficiency in patients with endometrial cancer, mutations in the genes responsible for Lynch syndrome (inherited forms of endometrial cancers) and other DNA changes that could help guide treatment strategies. Universal tumor DNA sequencing may help doctors better understand how to personalize care, increase length of life, and increase quality of life in patients with endometrial cancer and their relatives.
Project description:Whole exome sequencing was performed on set of 48 DNA samples obtained from 16 EGFR mutated NSCLC patients whose tumors progressed following EGFR-TKI treatment. The DNA samples included baseline biopsy, rebiopsy and blood from the same patient. By comparing the variants in rebiopsy tumors and baseline tumors we aim to understand the genomic alterations responsible for the development of EGFR-TKI resistance in NSCLC patients.
Project description:Agilent whole exome hybridisation capture was performed on genomic DNA derived from Chondrosarcoma cancer and matched normal DNA from the same patients. Next Generation sequencing performed on the resulting exome libraries and mapped to build 37 of the human reference genome to facilitate the identification of novel cancer genes. Now we aim to re find and validate the findings of those exome libraries using bespoke pulldown methods and sequencing the products.
Project description:The diversity and heterogeneity within high-grade serous ovarian cancer (HGSC) is not well understood. Comprehensive molecular analyses were performed including high-pass whole-genome sequencing, targeted deep DNA sequencing, RNA sequencing, reverse-phase protein arrays, mass spectrometry-based proteomics and phosphoproteomics, and immune profiling on primary and metastatic sites from highly clinically annotated HGSC samples. Samples were obtained pre-treatment based on a laparoscopic triage algorithm from patients who underwent R0 tumor debulking or received neoadjuvant chemotherapy (NACT) with excellent or poor response.
Project description:Clinical exome sequencing of cells freshly isolated from 12 human colorectal carcinoma patients (tumor endothelial cells, normal colon endothelial cells, PBMCs, each n=12) in comparison to DNA isolated from microdissected tumor cells (n=11) from corresponding FFPE-tissue blocks
Project description:We adopted high-throughput sequencing and mass spectrometry (MS) techniques in this study and carried out an integrative analysis of exosome proteome and DNA methylation data from blood samples of normal and Kidney stone disease patients to screen biomarkers.
Project description:Elevated plasma homocysteine is an independent risk factor for cardiovascular disease and stroke, however the etiology remains poorly understood. Elevated homocysteine is known to inhibit methyltransferases including DNA methyltransferases, but no methylome-wide analysis of elevated homocysteine has been reported. Peripheral blood genomic DNA methylation in 8 Singaporean-Chinese ischemic stroke patients (4 male, 4 female) with varying homocysteine titer and hypertensive status were profiled using methyl-CpG binding domain (MBD) protein-enriched genome sequencing (MBD-seq) on Illumina Genome Analyzer IIx. A methylome wide screen was undertaken for gender, total plasma homocysteine, hypertension and age. The data show considerable variability within the small cohort, including at genes which are related to one carbon metabolism and cardiovascular disease. Peripheral blood genomic DNA methylation in 8 Singaporean-Chinese ischemic stroke patients (4 male, 4 female) was profiled using methyl-CpG binding domain (MBD) protein-enriched genome sequencing (MBD-seq) on Illumina Genome Analyzer IIx. Methylation parrterns were correlated with homocysteine levels, lypertensive status, gender and age.
Project description:Here, we introduce a method termed DNA O-MAP, which uses programmable peroxidase-conjugated oligonucleotide probes to biotinylate nearby proteins. We show that DNA O-MAP can be coupled with sample multiplexed quantitative proteomics and next-generation sequencing to quantify DNA-protein and DNA-DNA interactions at specific genomic loci.