Project description:The dataset contains FASTQ files referring to the study "Small RNA sequencing from CSF extracellular vesicles - PD/CTR". For this project, RNA was isolated from CSF extracellular vesicles obtained by ultracentrifugation. Libraries were prepared with the TruSeq Small RNA library prep Illumina, and sequencing conducted in the Illumina HiSeq4000.
| EGAD00001006629 | EGA
Project description:extracellular vesicles small RNA sequencing
Project description:We report the small RNA transcriptome of testicular extracellular vesicles in mouse testis. We established a testis dissociation protocol to isolate testicular extracellular vesicles. After treatment with proteinase K and RNase A, the RNA inside the extracellular vesicles was extracted and sequenced by small RNA-seq.
Project description:A growing body of evidence in mammalian cells indicates that secreted vesicles can be used to mediate intercellular communication processes by transferring various bioactive molecules, including mRNAs and microRNAs. Based on these findings, we decided to analyze whether T. cruzi-derived extracellular vesicles contain RNA molecules and performed a deep sequencing and genome-wide analysis of a size-fractioned cDNA library (16M-bM-^@M-^S40 nt) from extracellular vesicles secreted by noninfective epimastigote and infective metacyclic trypomastigote forms. Our data show that the small RNAs contained in these extracellular vesicles originate from multiple sources, including tRNAs. In addition, our results reveal that the variety and expression of small RNAs are different between parasite stages, suggesting diverse functions. Taken together, these observations call attention to the potential regulatory functions that these RNAs might play once transferred between parasites and/or to mammalian host cells. Small RNAs profiles (16-40 nt) of epimastigote-derived extracellular vesicles, metacyclic trypomastigote-derived extracellular vesicles and metacyclic trypomastigote parental cells.
Project description:Exosomes/microvesicles (hereafter referred to as extracellular vesicles) were isolated from the ULF of day 14 cyclic and pregnant ewes using ExoQuick-TC. Extracellular vesicle RNA was pooled (n=4 per status) and analyzed for small RNAs by sequencing on the Ion Torrent PGM platform and analysis with CLC Genomics Workbench small RNA workflow based on the miRBase (Release 19) Bos taurus database. Small RNA analysis of day 14 uterine luminal fluid extracellular vesicles isolated from pregnant and cyclic ewes.
Project description:To examine the changes of miRNA in the small extracellular vesicles of breast cancer cells receiving DOX chemotherapy. Human breast cancer cells (MDA-MB-231 cells) were cultured with exorcism-free serum, and treated with DOX. After 24h, cell supernatant was collected and small extracellular vesicles were extracted by ultra-fast centrifugation method, and miRNA content in small extracellular vesicles was obtained for high-throughput miRNA sequencing.
Project description:We report small RNA sequencing technology for high-throughput profiling of microRNA content within small extracellular vesicles isolated from nonsenescent and senescent human dermal fibroblasts.
2021-09-16 | GSE184084 | GEO
Project description:Naegleria fowleri Nf69 extracellular vesicles small RNA sequencing
Project description:Abstract: Background: Platelet-derived Extracellular Vesicles, or “Platelet Dust” (PD), are reported as the most-abundant extracellular vesicles in plasma. However, the PD molecular content, especially the small RNA profile, is still poorly characterized. This study aims to characterize PD and other extracellular vesicles (EVs) in patients with non- small-cell lung cancer (NSCLC), focusing on their small RNA signatures and diagnostic potential. Methods: The EVs were isolated directly from the plasma of healthy donors and patients with NSCLC using the surface markers CD9, CD63, CD81 (overall EVs), and CD61 (PD). Small RNA sequencing was then performed to comprehensively profile the miRNAs. Results: Our analysis revealed distinct small RNA profiles in the EVs and the PD from the patients with NSCLC. The EVs (CD9-, CD63-, and CD81-positive) showed the enrichment of four miRNAs and the depletion of ten miRNAs, while the PD (CD61- positive) exhibited a more complex profile, with nineteen miRNAs enriched and nine miRNAs depleted in the patients with NSCLC compared to those of the healthy controls. Conclusions: This exploratory study enhances our understanding of miRNA composition within different plasma vesicle populations, shedding light on the biology of plasma vesicles and their contents. Furthermore, utilizing an extracellular vesicle isolation method with potential clinical applicability offers the prospect of improved cancer characterization and detection by selecting the most informative subpopulation of plasma vesicles.