Project description:Purpose: In this study, Escherichia coli DH5alpha whole transcriptome sequencing was performed in order to compare the different gene expression profiles between control and exposed to Wi-Fi radiofrequency radiations. Methods:Escherichia coli DH5alpha were exposed to Wi-Fi radiations. Total RNA samples( control and exposed ) were extracted by bacteria protect-Rneasy kit,treated with DNAase and subjected to sequnecing using an Illumina-NovaSeq 6000 platform. Library preparation and sequencing were performed by Macrogen (south korea).Trimmed reads are mapped to reference genome with Bowtie. HTseq was used for expression profiling. Expression profile was calculated for each sample and gene as read count.
2019-10-21 | GSE126584 | GEO
Project description:Long-read sequencing of Escherichia coli mixture
Project description:An experiment to identify the downstream targets of PatE, a prophage encoded AraC-like transcriptional regulator, in transcriptional activation of acid-resistance pathways of enterohemorrhagic Escherichia coli strain EDL933 using deletion and complementation strains (Delta3 and Delta3_1, respectively). Incomplete 2 factor with dye swaps. Genotype: 3 levels (wt, detla3, delta3_1) Bicarbonate: 2 levels (pos, neg) on wt only. 4 biological replicates, 2 in each dye orientation. Microarrays processed at Australian Genome Research Facility.
Project description:Here we have developed a method that combines chromatin immunoprecipitation with next-generation sequencing (ChIP-Seq) and mathematical modeling to quantify RecA protein binding during the active repair of a single DSB in the chromosome of Escherichia coli. Examination of RecA binding during double-strand break repair in Escherichia coli
Project description:The Australian Acute Care Genomics program provides ultra-rapid diagnostic testing to critically ill infants and children with suspected genetic conditions. Over two years, we performed whole genome sequencing (WGS) in 290 families, with average time to result of 2.9 days, and diagnostic yield of 47%. We performed additional bioinformatic analyses and transcriptome sequencing in all patients who remained undiagnosed. Long-read sequencing and functional assays, ranging from clinically accredited enzyme analysis to bespoke quantitative proteomics, were deployed in selected cases. This resulted in an additional 19 diagnoses, and an overall diagnostic yield of 54%. Diagnostic variants ranged from structural chromosomal abnormalities through to an intronic retrotransposon, disrupting splicing. Critical care management changed in 120 diagnosed patients (77%). Results informed precision treatments; surgical and transplant decisions; and palliation in 94 (60%). We propose that integration of multi-omic approaches into mainstream diagnostic practice is necessary to realise the full potential of genomic testing.
Project description:Primary objectives: The study investigates whether a Escherichia coli Nissle-suspenison has a (preventive) antidiarrheal effect in patients with tumors who are treated with chemotherapeutic schemes which are associated with increased occurances of diarrhea. Diarrhea caused by treatment are thought to be reduced in intensity and/or frequency by the treatment with Escherichia coli Nissle-Suspension.
Primary endpoints: Common toxicity criteria (CTC) for diarrhea
Project description:a chromosome-level nuclear genome and organelle genomes of the alpine snow alga Chloromonas typhlos were sequenced and assembled by integrating short- and long-read sequencing and proteogenomic strategy