Project description:Metagenome data from soil samples were collected at 0 to 10cm deep from 2 avocado orchards in Channybearup, Western Australia, in 2024. Amplicon sequence variant (ASV) tables were constructed based on the DADA2 pipeline with default parameters.
Project description:Soil transplant serves as a proxy to simulate climate change in realistic climate regimes. Here, we assessed the effects of climate warming and cooling on soil microbial communities, which are key drivers in Earth’s biogeochemical cycles, four years after soil transplant over large transects from northern (N site) to central (NC site) and southern China (NS site) and vice versa. Four years after soil transplant, soil nitrogen components, microbial biomass, community phylogenetic and functional structures were altered. Microbial functional diversity, measured by a metagenomic tool named GeoChip, and phylogenetic diversity are increased with temperature, while microbial biomass were similar or decreased. Nevertheless, the effects of climate change was overridden by maize cropping, underscoring the need to disentangle them in research. Mantel tests and canonical correspondence analysis (CCA) demonstrated that vegetation, climatic factors (e.g., temperature and precipitation), soil nitrogen components and CO2 efflux were significantly correlated to the microbial community composition. Further investigation unveiled strong correlations between carbon cycling genes and CO2 efflux in bare soil but not cropped soil, and between nitrogen cycling genes and nitrification, which provides mechanistic understanding of these microbe-mediated processes and empowers an interesting possibility of incorporating bacterial gene abundance in greenhouse gas emission modeling.
Project description:Considering the crucial role of root exudates, we hypothesized that continuous wheat cultivation would lead to lower glucose release, resulting in lower microbial growth, activity, and biomass. For the first time in situ glucose imaging was optimized for studying the interactions in the first (W1) and third (W3) wheat after break crop plots in the field. Glucose imaging method combined with soil microbial respiration, enzyme kinetics and the quantification SWEET genes expression levels in wheat plants. W3 had the lowest proportion of hotspots for glucose release with 1.35 % of the total soil surface area, indicating a 17.7 % decline compared to W1. Also, the expressions of functional orthologous genes of SWEET1a in wheat roots were significantly upregulated in W3 compared to W1. The growing microbial biomass in the rhizosphere soil of W1 was about five times higher than W3. Differences in SWEET gene expression and shift in glucose release is linked to altered root physiology and exudation processes, potentially reflecting the plant's strategy to create a less favourable environment for opportunistic pathogens. Hence, this study provides novel insights into the complex interactions between continuous wheat cultivation, root exudation, microbial dynamics, gene expression, and enzymatic activities.
Project description:Background: The soil environment is responsible for sustaining most terrestrial plant life on earth, yet we know surprisingly little about the important functions carried out by diverse microbial communities in soil. Soil microbes that inhabit the channels of decaying root systems, the detritusphere, are likely to be essential for plant growth and health, as these channels are the preferred locations of new root growth. Understanding the microbial metagenome of the detritusphere and how it responds to agricultural management such as crop rotations and soil tillage will be vital for improving global food production. Methods: The rhizosphere soils of wheat and chickpea growing under + and - decaying root were collected for metagenomics sequencing. A gene catalogue was established by de novo assembling metagenomic sequencing. Genes abundance was compared between bulk soil and rhizosphere soils under different treatments. Conclusions: The study describes the diversity and functional capacity of a high-quality soil microbial metagenome. The results demonstrate the contribution of the microbiome from decaying root in determining the metagenome of developing root systems, which is fundamental to plant growth, since roots preferentially inhabit previous root channels. Modifications in root microbial function through soil management, can ultimately govern plant health, productivity and food security.
Project description:Soil transplant serves as a proxy to simulate climate change in realistic climate regimes. Here, we assessed the effects of climate warming and cooling on soil microbial communities, which are key drivers in EarthM-bM-^@M-^Ys biogeochemical cycles, four years after soil transplant over large transects from northern (N site) to central (NC site) and southern China (NS site) and vice versa. Four years after soil transplant, soil nitrogen components, microbial biomass, community phylogenetic and functional structures were altered. Microbial functional diversity, measured by a metagenomic tool named GeoChip, and phylogenetic diversity are increased with temperature, while microbial biomass were similar or decreased. Nevertheless, the effects of climate change was overridden by maize cropping, underscoring the need to disentangle them in research. Mantel tests and canonical correspondence analysis (CCA) demonstrated that vegetation, climatic factors (e.g., temperature and precipitation), soil nitrogen components and CO2 efflux were significantly correlated to the microbial community composition. Further investigation unveiled strong correlations between carbon cycling genes and CO2 efflux in bare soil but not cropped soil, and between nitrogen cycling genes and nitrification, which provides mechanistic understanding of these microbe-mediated processes and empowers an interesting possibility of incorporating bacterial gene abundance in greenhouse gas emission modeling. Fifty four samples were collected from three soil types (Phaeozem,Cambisol,Acrisol) in three sites (Hailun, Fengqiu and Yingtan) along a latitude with reciprocal transplant; Both with and without maize cropping in each site; Three replicates in every treatments.
Project description:A cultivation facility that can assist users in controlling the soil water condition is needed for accurately phenotyping plants under drought stress in an artificial environment. Here we report the Internet of Things (IoT)-based pot system controlling optional treatment of soil water condition (iPOTs), an automatic irrigation system that mimics the drought condition in a growth chamber. The Wi-Fi-enabled iPOTs system allows water supply from the bottom of the pot, based on the soil water level set by the user, and automatically controls the soil water level at a desired depth. The iPOTs also allows users to monitor environmental parameters, such as soil temperature, air temperature, humidity, and light intensity, in each pot. To verify whether the iPOTs mimics the drought condition, we conducted a drought stress test on rice varieties and near-isogenic lines, with diverse root system architecture, using the iPOTs system installed in a growth chamber. Similar to the results of a previous drought stress field trial, the growth of shallow-rooted rice accessions was severely affected by drought stress compared with that of deep-rooted accessions. The microclimate data obtained using the iPOTs system increased the accuracy of plant growth evaluation. Transcriptome analysis revealed that pot positions in the growth chamber had little impact on plant growth. Together, these results suggest that the iPOTs system represents a reliable platform for phenotyping plants under drought stress.
Project description:This study evaluates the transcriptome of 3 Arabidopsis thaliana genotypes (Col-0, phf1 and phr1/phl1) growing in soil treated under a gradient of fertilization regimes.