Project description:Hypoxia can induce vasoconstriction followed by vascular remodeling including hypertrophy and hyperplasia of pulmonary vascular smooth muscle and proliferation of endothelial cells. The goal of this project is to elucidate the genes involved in vascular remodeling following pulmonary hypertension. Total RNA was isolated from lungs of normoxic and hypoxic treated animals.
Project description:Hypoxia can induce vasoconstriction followed by vascular remodeling including hypertrophy and hyperplasia of pulmonary vascular smooth muscle and proliferation of endothelial cells. The goal of this project is to elucidate the genes involved in vascular remodeling following pulmonary hypertension. Total RNA was isolated from lungs of normoxic and hypoxic treated animals. Keywords: other
Project description:Pulmonary hypertension is a frequent consequence of left heart disease and congestive heart failure (CHF) and causes extensive lung vascular remodelling which leads to right ventricular failure. Functional genomics underlying this structural remodelling are unknown but present potential targets for novel therapeutic strategies. We used microarrays to detail the gene expression underlying vascular remodeling in the pathogenesis of pulmonary hypertension and identified distinct classes of up-regulated genes during this process. Control rat lung samples were compared to samples of aortic banding rat lungs which exhibit pulmonary hypertension
Project description:To determine roles by which infiltrating pulmonary intersitial macrophages regulate development and progression of pulmonary vascular remodeling and pulmonary hypertension.
Project description:Pulmonary arterial hypertension (PAH) is a progressive pulmonary vascular disease that culminates in right heart failure. Vascular pathology in PH is characterized by pulmonary vasoconstriction and progressive vascular remodeling processes that affects all layers of the vascular wall (intima, media and adventitia).
Project description:Pulmonary hypertension (PH), a common complication in dogs affected by degenerative mitral valve disease (DMVD), is a progressive disorder characterized by increased pulmonary arterial pressure (PAP) and pulmonary vascular remodeling. Early diagnosis of PH is crucial for effective management and improved clinical outcomes. This study aimed to identify potential serum biomarkers for diagnosing PH in dogs affected with DMVD using a phosphoproteomic approach.
Project description:	Pulmonary hypertension (PH), a common complication in dogs affected by degenerative mitral valve disease (DMVD), is a progressive disorder characterized by increased pulmonary arterial pressure (PAP) and pulmonary vascular remodeling. Early diagnosis of PH is crucial for effective management and improved clinical outcomes. This study aimed to identify potential serum biomarkers for diagnosing PH in dogs affected with DMVD using a phosphoproteomic approach.
Project description:Pulmonary hypertension worsens outcome in left heart disease. Stiffening of the pulmonary artery may drive this pathology by increasing right ventricular dysfunction and lung vascular remodeling. We showed that pulmonary arteries from patients with left heart disease are characterized by increased stiffness that correlates with impaired pulmonary hemodynamics. Pulmonary arteries in left heart disease patients with pulmonary hypertension were characterized by degradation of elastic fibers paralleled by an accumulation of fibrillar collagens. We utilized RNA sequencing to identify differentially expressed genes regulating extracellular matrix remodeling in pulmonary arteries of left heart disease patients with or without pulmonary hypertension, in comparison to healthy-heart donor controls. As such we identified that transcriptional deregulation of extracellular matrix constituents and their regulators precedes clinical pulmonary hypertension, and therefore might be a pathomechanism that drives pulmonary arterial remodeling and stiffening in left heart disease.
Project description:Rationale: Schistosomiasis is one of the most common causes of pulmonary arterial hypertension worldwide, but the pathogenic mechanism by which the host inflammatory response contributes to vascular remodeling is unknown. We sought to identify signaling pathways that play protective or pathogenic roles in experimental Schistosoma-induced pulmonary vascular disease by whole-lung transcriptome analysis. Methods: Wildtype mice were experimentally exposed to S. mansoni ova by intraperitoneal sensitization followed by tail vein augmentation, and the phenotype assessed by right ventricular catheterization and tissue histology, RNA and protein analysis. Whole-lung transcriptome analysis by microarray and RNA sequencing was performed, the latter analyzed using 2 bioinformatic methods. Functional testing of the candidate IL-6 pathway was determined using IL6-knockout mice and the STAT3 inhibitor STI-201. Results: Wild-type mice exposed to S. mansoni had increased right ventricular systolic pressure and thickness of the pulmonary vascular media. Whole lung transcriptome analysis identified the IL6-STAT3-NFATc2 pathway as being upregulated, which was confirmed by PCR and immunostaining of lung tissue from S. mansoni-exposed mice and patients who died of the disease. Mice lacking IL6 or treated with STI-201 developed pulmonary hypertension associated with significant intima remodeling after exposure to S. mansoni. Conclusions: Whole lung transcriptome analysis identified upregulation of the IL6-STAT3-NFATc2 pathway, and IL6 signaling was found to be protective against Schistosoma-induced intimal remodeling. Affy Mouse ST1.0 chip used. Whole lung transcriptome of 3 mice with experimental Schistosoma-induced pulmonary hypertension, compared to 3 control mice. All mice on a C57Bl6/J background.