Project description:Hypoxia can induce vasoconstriction followed by vascular remodeling including hypertrophy and hyperplasia of pulmonary vascular smooth muscle and proliferation of endothelial cells. The goal of this project is to elucidate the genes involved in vascular remodeling following pulmonary hypertension. Total RNA was isolated from lungs of normoxic and hypoxic treated animals.
Project description:Hypoxia can induce vasoconstriction followed by vascular remodeling including hypertrophy and hyperplasia of pulmonary vascular smooth muscle and proliferation of endothelial cells. The goal of this project is to elucidate the genes involved in vascular remodeling following pulmonary hypertension. Total RNA was isolated from lungs of normoxic and hypoxic treated animals. Keywords: other
Project description:Pulmonary hypertension is a frequent consequence of left heart disease and congestive heart failure (CHF) and causes extensive lung vascular remodelling which leads to right ventricular failure. Functional genomics underlying this structural remodelling are unknown but present potential targets for novel therapeutic strategies. We used microarrays to detail the gene expression underlying vascular remodeling in the pathogenesis of pulmonary hypertension and identified distinct classes of up-regulated genes during this process. Control rat lung samples were compared to samples of aortic banding rat lungs which exhibit pulmonary hypertension
Project description:To determine roles by which infiltrating pulmonary intersitial macrophages regulate development and progression of pulmonary vascular remodeling and pulmonary hypertension.
Project description:Pulmonary arterial hypertension (PAH) is a progressive pulmonary vascular disease that culminates in right heart failure. Vascular pathology in PH is characterized by pulmonary vasoconstriction and progressive vascular remodeling processes that affects all layers of the vascular wall (intima, media and adventitia).
Project description:Pulmonary hypertension (PH), a common complication in dogs affected by degenerative mitral valve disease (DMVD), is a progressive disorder characterized by increased pulmonary arterial pressure (PAP) and pulmonary vascular remodeling. Early diagnosis of PH is crucial for effective management and improved clinical outcomes. This study aimed to identify potential serum biomarkers for diagnosing PH in dogs affected with DMVD using a phosphoproteomic approach.
Project description:	Pulmonary hypertension (PH), a common complication in dogs affected by degenerative mitral valve disease (DMVD), is a progressive disorder characterized by increased pulmonary arterial pressure (PAP) and pulmonary vascular remodeling. Early diagnosis of PH is crucial for effective management and improved clinical outcomes. This study aimed to identify potential serum biomarkers for diagnosing PH in dogs affected with DMVD using a phosphoproteomic approach.
Project description:Pulmonary veno-occlusive disease (PVOD) is a rare and severe form of pulmonary arterial hypertension, characterized by progressive obstruction of small pulmonary vessels and a lack of effective therapeutic options. Our previous research, utilizing a mitomycin C (MMC)-induced rat model, demonstrated that activation of the integrated stress response (ISR) via protein kinase R (PKR) is a critical driver of endothelial dysfunction and pulmonary vascular remodeling. However, it remains unclear whether PKR is the sole mediator of ISR activation and the pathogenesis of PVOD under the MMC treatment. In this study, we administered the same dose of MMC used in rats to control (Ctrl) and PKR knockout (KO) mice. Consistent with observations in rats, Ctrl mice exhibited ISR activation in the vascular endothelium and rapidly developed vascular remodeling in both arteries and veins following MMC treatment. In contrast, KO mice showed no evidence of ISR activation or vascular remodeling under same conditions. Proteomic analysis revealed that the PKR-ISR axis perturbs proteostasis in Ctrl mice but not in KO mice. These findings highlight the essential role of PKR-mediated ISR activation and the disruption of proteostasis in the pathogenesis of PVOD, placing PKR as a promising therapeutic target for this disease.
Project description:Pulmonary hypertension worsens outcome in left heart disease. Stiffening of the pulmonary artery may drive this pathology by increasing right ventricular dysfunction and lung vascular remodeling. We showed that pulmonary arteries from patients with left heart disease are characterized by increased stiffness that correlates with impaired pulmonary hemodynamics. Pulmonary arteries in left heart disease patients with pulmonary hypertension were characterized by degradation of elastic fibers paralleled by an accumulation of fibrillar collagens. We utilized RNA sequencing to identify differentially expressed genes regulating extracellular matrix remodeling in pulmonary arteries of left heart disease patients with or without pulmonary hypertension, in comparison to healthy-heart donor controls. As such we identified that transcriptional deregulation of extracellular matrix constituents and their regulators precedes clinical pulmonary hypertension, and therefore might be a pathomechanism that drives pulmonary arterial remodeling and stiffening in left heart disease.