Project description:Calca-expressing neurons in the parabrachial nucleus (PBN) play a major role in regulating appetite and transmitting real or potential threat signals. Here, we reveal transcripts specific or highly enriched in this neuronal population by using mouse genetics and a conditional viral ribosome-tagging approach to phenotype these neurons.
Project description:In addition to their intrinsic rewarding properties. opioids can also evoke aversive reactions that protect against misuse. Cellular mechanisms that govern the interplay between opioid reward and aversion are poorly understood. We used whole-brain activity mapping to show that neurons in the dorsal peduncular nucleus (DPn) are highly responsive to the opioid oxycodone. Connectomic profiling revealed that DPn neurons innervate the parabrachial nucleus (PBn). Spatial and single-nuclei transcriptomics resolved a unique population of PBn-projecting pyramidal neurons restricted to the DPn that express μ-opioid receptors (μORs). Disrupting μOR signaling in these neurons switched oxycodone from rewarding to aversive and exacerbated the severity of opioid withdrawal. These findings identify DPn neurons as key substrates for the abuse liability of opioids.
Project description:Neuroanatomical methods enable high-resolution mapping of neural circuitry, but do not allow systematic molecular profiling of neurons based on their connectivity. Here, we report the development of a novel approach for molecularly profiling projective neurons. We show that ribosomes can be labeled with a camelid nanobody raised against GFP and that this system can be engineered to selectively capture translating mRNAs from cells expressing GFP. We generated a transgenic mouse encoding a nanobody-ribosomal protein fusion (Syn-NBL10) and used a retrograde virus (CAV) encoding GFP to immunoprecipitate ribosomes from projection neurons. This enabled us to profile neurons projecting to the nucleus accumbens. The current method provides a new means for profiling neurons based on their projections. Translating mRNAs immunoprecipitated from neurons projecting to the nucleus accumbens. Each Input and IP sample corrspond to a pooled group of 6 mice.
Project description:Neuroanatomical methods enable high-resolution mapping of neural circuitry, but do not allow systematic molecular profiling of neurons based on their connectivity. Here, we report the development of a novel approach for molecularly profiling projective neurons. We show that ribosomes can be labeled with a camelid nanobody raised against GFP and that this system can be engineered to selectively capture translating mRNAs from cells expressing GFP. We generated a transgenic mouse encoding a nanobody-ribosomal protein fusion (Syn-NBL10) and used a retrograde virus (CAV) encoding GFP to immunoprecipitate ribosomes from projection neurons. This enabled us to profile neurons projecting to the nucleus accumbens. The current method provides a new means for profiling neurons based on their projections.
Project description:Ribosome TRAP (affinity purification) from Glutamaterigc or GABAergic neurons of the Bed Nucleus Stria Terminalis (BNST) expressing Cre, enabling expression of a floxed TRAP reporter delivered by retrofecting AAV injected into the parabrachial nucleus (PBN) of mice.