Project description:Liver disease alters the gut microenvironment by liver-gut axis. To investigate the composition and transcriptome changes of various intestinal cell populations in liver cirrhosis, we delineated a single-cell atlas of the colon from mice treated CCl4 for 6 weeks.
Project description:The bone marrow niche plays a critical role in controlling the fate of hematopoietic stem cells (HSCs) by integrating intrinsic and extrinsic signals. However, the molecular events in the HSC niche remain to be investigated. Here, we report that intercellular adhesion molecule-1 (ICAM-1) maintains HSC quiescence and repopulation capacity in the niche. ICAM-1-deficient mice (ICAM-1-/-) displayed significant expansion of phenotypic long-term HSCs with impaired quiescence, as well as favors myeloid cell expansion. ICAM-1-deficient HSCs presented normal reconstitution capacity during serial transplantation; however, reciprocal transplantation experiments showed that ICAM-1 deficiency in the niche impaired HSCs quiescence and repopulation capacity. In addition, ICAM-1 deletion caused failure to retain HSCs in the bone marrow and changed the expression profile of stroma cell-derived factors, possibly representing the mechanism for defective HSCs in ICAM-1-/- mice. Collectively, these observations identify ICAM-1 as a regulator in the bone marrow niche.
Project description:Inflammation dramatically alters the gut microenvironment. To investigate the composition and transcriptome changes of various intestinal cell populations during the initial phase of inflammation, and the underlying cellular interactions, we delineated a single-cell atlas of the mouse colon treated with DSS on the day 2 of colitis.
Project description:To the search of new colon tumor biomarkers in the transition from normal colon (NC) mucosa to adenoma (AD) and adenocarcinoma (AC), we integrated microarray data with the results of a high-throughput proteomic workflow. In proteomic study, we used a modified isoelectric focusing protocol on strips with an immobilized pH gradient to separate peptides labeled with iTRAQ (isobaric tags for relative and absolute quantitation) tags followed by liquid chromatography–tandem mass spectrometry analysis.