Project description:Bacteriophage infection of Lactococcus lactis strains used in the manufacture of fermented milk products is a major threat for the dairy industry. A greater understanding of the global molecular response of the bacterial host following phage infection has the potential to identify new targets for the design of phage control measures for biotechnological processes. In this study, we have used whole-genome oligonucleotide microarrays to gain insights into the genomic intelligence driving the instinctive response of L. lactis subsp. lactis IL1403 to the onset of a challenge with the lytic prolate-headed phage c2. Following phage adsorption, the bacterium differentially regulated the expression of 61 genes belonging to 14 functional categories, and mostly to cell envelope (12 genes), regulatory functions (11 genes), and carbohydrate metabolism (7 genes). The nature of the differentially regulated genes suggests the orchestration of a complex response involving induction of cell envelope stress proteins, D-alanylation of cell-wall lipoteichoic acids (LTAs), restoration of the proton motive force (PMF), and energy conservation. Increased D-alanylation of LTAs would act as an adsorption blocking mechanism, which we speculate may allow the survival of a small percent of the cell population when facing more realistic in vivo low titer-phage attacks. The modification of LTAs decoration in response to phage c2 adsorption also suggests these cell wall structures as possible primary receptors for this phage. Restoration of a physiological PMF is achieved by regulating the expression of genes affecting the two main components of the PMF, and serves to reverse a drastic depolarization of the host membrane caused by phage adsorption. Down-regulation of energy-consuming metabolic activities and a switch to anaerobic respiration helps the bacterium to save energy in order to sustain the PMF and the overall response to phage. We finally propose that the overall transcriptional response of L. lactis IL1403 to the phage stimuli is orchestrated by the concerted action of Phage Shock Proteins and of the bivalent transcriptional regulator SpxB following activation by the two-component system CesSR. To our knowledge, this represents the first detailed description in L. lactis, and probably in Gram-positive bacteria, of the molecular mechanisms involved in the host response to the membrane perturbation mediated by phage adsorption. Two-condition experiment: IL1403 vs. Bacteriophage c2-infected IL1403 cells. Biological replicates: 2 controls, 2 infected, independently grown and harvested. Two technical replicates per array.
Project description:The ability of Staphylococcus aureus to establish strong biofilms in milk poses a significant threat to the consumer’s health and a challenge for the dairy industry. Here, we have evaluated the efficacy of phage-based treatments (phage Kayvirus rodi and lytic protein LysRODI∆Ami) for combating biofilm formation on polystyrene and stainless steel surfaces submerged in UHT skim milk compared to growth medium. An adaptive transcriptional response was observed in cells intended to metabolize lactose and to increase biofilm formation. Also, biofilms grown in milk exhibited a denser and more complex matrix, mainly composed of proteins, presumably casein. These changes in matrix composition and structure offered a high resistance to both LysRODI∆Ami (4 µM) and phage Kayvirus rodi (108 PFU/ml) individual treatments, although combination of the two led to some reduction in the number of attached cells. Both antimicrobials were more successful at biofilm inhibition, exhibiting a synergistic interaction when used together. Unexpectedly, the bacteriophage treatment exhibited enhanced efficacy to prevent biofilm development in milk compared to fresh medium. The shift in matrix composition and pH modulation might be behind these differences. This research contributes to the development of innovative strategies for ensuring milk quality and safety. Moreover, our results demonstrate the importance of testing antimicrobials under conditions that reflect the real-life application as much as possible.
Project description:Bacteriophage infection of Lactococcus lactis strains used in the manufacture of fermented milk products is a major threat for the dairy industry. A greater understanding of the global molecular response of the bacterial host following phage infection has the potential to identify new targets for the design of phage control measures for biotechnological processes. In this study, we have used whole-genome oligonucleotide microarrays to gain insights into the genomic intelligence driving the instinctive response of L. lactis subsp. lactis IL1403 to the onset of a challenge with the lytic prolate-headed phage c2. Following phage adsorption, the bacterium differentially regulated the expression of 61 genes belonging to 14 functional categories, and mostly to cell envelope (12 genes), regulatory functions (11 genes), and carbohydrate metabolism (7 genes). The nature of the differentially regulated genes suggests the orchestration of a complex response involving induction of cell envelope stress proteins, D-alanylation of cell-wall lipoteichoic acids (LTAs), restoration of the proton motive force (PMF), and energy conservation. Increased D-alanylation of LTAs would act as an adsorption blocking mechanism, which we speculate may allow the survival of a small percent of the cell population when facing more realistic in vivo low titer-phage attacks. The modification of LTAs decoration in response to phage c2 adsorption also suggests these cell wall structures as possible primary receptors for this phage. Restoration of a physiological PMF is achieved by regulating the expression of genes affecting the two main components of the PMF, and serves to reverse a drastic depolarization of the host membrane caused by phage adsorption. Down-regulation of energy-consuming metabolic activities and a switch to anaerobic respiration helps the bacterium to save energy in order to sustain the PMF and the overall response to phage. We finally propose that the overall transcriptional response of L. lactis IL1403 to the phage stimuli is orchestrated by the concerted action of Phage Shock Proteins and of the bivalent transcriptional regulator SpxB following activation by the two-component system CesSR. To our knowledge, this represents the first detailed description in L. lactis, and probably in Gram-positive bacteria, of the molecular mechanisms involved in the host response to the membrane perturbation mediated by phage adsorption.
Project description:The interactions between lytic phages and their hosts are typically studied in bulk culture, which obscures cell-cell differences in infection susceptibility or expression of protective factors. Here, we use bacterial single-cell RNA sequencing to profile the transcriptomes of ~50,000 cells from cultures of a human pathobiont, Bacteroides fragilis, infected with a lytic bacteriophage. From a single sampling, we quantified the asynchronous progression of phage infection in individual bacterial cells and reconstructed the infection timeline, characterizing both host and phage transcriptomic changes as infection unfolded. Further, we discovered phenotypic subpopulations of bacteria that remained uninfected. Each cell's vulnerability to phage infection was influenced by expression of multiple genetic loci, most prominently phase-variable capsular polysaccharide (CPS) biosynthesis pathways and an operon predicted to encode fimbrial genes. These findings uncovered genome-wide phase variation and stochasticity that enable bacterial survival and re-growth without acquiring additional mutations. Overall, we establish bacterial single-cell RNA sequencing as a powerful platform for investigating the dynamics of host-phage interactions and revealing the roles of phase variation and stochasticity in bacterial defenses.
Project description:The lactococcal phage p2 is a model for studying the Skunavirus genus, the most prevalent group of phages in cheese factories worldwide. It infects L. lactis MG1363, a model strain for the study of Gram-positive bacteria. The structural proteins of phage p2 have been thoroughly described. However, most of its non-structural proteins are still uncharacterized. Here, we developed an integrative approach, making use of structural biology, genomics, physiology, and proteomics to provide insights into the function of ORF47, the most conserved non-structural protein of unknown function among the Skunavirus genus. We found this small phage protein to have a major impact on the bacterial proteome and to be important to prevent bacterial resistance to phage infection.
Project description:The basic biology of bacteriophage–host interactions has attracted increasing attention due to a renewed interest in the therapeutic potential of bacteriophages. In addition, knowledge of the host pathways inhibited by phage may provide clues to novel drug targets. However, the effect of phage on bacterial gene expression and metabolism is still poorly understood. In this study, we tracked phage–host interactions by combining transcriptomic and metabolomic analyses in Pseudomonas aeruginosa infected with a lytic bacteriophage, PaP1. Compared with the uninfected host, 7.1% (399/5655) of the genes of the phage-infected host were differentially expressed genes (DEGs); of those, 354 DEGs were downregulated at the late infection phase. Many of the downregulated DEGs were found in amino acid and energy metabolism pathways. Using metabolomics approach, we then analyzed the changes in metabolite levels in the PaP1-infected host compared to un-infected controls. Thymidine was significantly increased in the host after PaP1 infection, results that were further supported by increased expression of a PaP1-encoded thymidylate synthase gene. Furthermore, the intracellular betaine concentration was drastically reduced, whereas choline increased, presumably due to downregulation of the choline–glycine betaine pathway. Interestingly, the choline–glycine betaine pathway is a potential antimicrobial target; previous studies have shown that betB inhibition results in the depletion of betaine and the accumulation of betaine aldehyde, the combination of which is toxic to P. aeruginosa. These results present a detailed description of an example of phage-directed metabolism in P. aeruginosa. Both phage-encoded auxiliary metabolic genes and phage-directed host gene expression may contribute to the metabolic changes observed in the host.
Project description:Success of phage therapies is limited by bacterial defenses against phages. While a variety of anti-phage defense mechanisms has been characterized, how expression of these systems is distributed across individual cells and how their combined activities translate into protection from phages has not been studied. Using bacterial single-cell RNA sequencing, we profiled the transcriptomes of ~50,000 cells from cultures of a human pathobiont, Bacteroides fragilis, infected with a lytic bacteriophage. We quantified the asynchronous progression of phage infection in single bacterial cells and reconstructed the infection timeline, characterizing both host and phage transcriptomic changes as infection unfolded. We discovered subpopulations of bacteria that remained uninfected and heterogeneously expressed protective factors. Each cell’s vulnerability to phage infection was defined by combinatorial expression of multiple genetic loci, including phase-variable capsular polysaccharide (CPS) biosynthesis pathways, restriction-modification systems (RM), and a novel operon predicted to encode fimbrial genes. Acting in concert, these heterogeneously expressed anti-phage defense mechanisms create a phenotypic landscape where distinct protective combinations enable the survival and re-growth of bacteria expressing these phenotypes without acquiring additional mutations. The emerging model of complementary action of multiple protective mechanisms heterogeneously expressed across an isogenic bacterial population showcases the potent role of phase variation and stochasticity in bacterial anti-phage defenses.
Project description:We observed the expression profile of the total mRNA in crp (TTHA1437) deletion mutant strain of Thermus thermophilus HB8 during infection of bacteriophage ϕYS40. Keywords: time course, bacteriophage, infection, CRP, cAMP receptor protein, deletion mutant
2009-11-03 | GSE16955 | GEO
Project description:Lemur population genomics and phylogeography in eastern Madagascar