Project description:The link between human gut microbiota (a complex group of microorganisms including not only bacteria but also fungi, viruses, etc.,) and the physiological state is nowadays unquestionable. Metaproteomic has emerged as a useful technique to characterize this microbial community, not just taxonomically, but also focusing on specific biological processes carried out by gut microbiota that may have an effect in the host health or pathological state. Cystic fibrosis is a genetic disease in which the microbiota of the respiratory tract determines the patient's survival and differences in composition of gut microbiota of cystic fibrosis patients respect to healthy infants have been reported. In order to characterize this host-microbiota inter-relation, we carried out the metaproteomic study of 30 stool samples from infants with cystic fibrosis.
Project description:The aim of this study is to characterise and compare the composition of the microbiota from sputum samples of cystic fibrosis sufferers from different centres. These data are part of a pre-publication release. For information on the proper use of pre-publication data shared by the Wellcome Trust Sanger Institute (including details of any publication moratoria), please see http://www.sanger.ac.uk/datasharing/
Project description:Pseudomonas aeruginosa airway infection is the primary cause of death in Cystic Fibrosis (CF). During early infection P. aeruginosa produces multiple virulence factors, which cause acute pulmonary disease and are largely regulated by quorum sensing (QS) intercellular signalling networks. Longitudinal clinical studies have observed the loss, through adaptive mutation, of QS and QS-related virulence in late chronic infection. Although the mechanisms are not understood, infection with QS mutants has been linked to a worse outcome for CF patients. By comparing QS-active and QS-inactive P. aeruginosa CF isolates, we have identified novel virulence factors and pathways associated with QS disruption. In particular, we noted factors implicating increased intra-phagocyte survival. Our data present novel targets as candidates for future CF therapies. Some of these targets are already the subject of drug development programmes for the treatment of other bacterial pathogens and may provide cross-over benefit to the CF population. Refer to individual Series. This SuperSeries is composed of the following subset Series: GSE25128: Gene expression data from Pseudomonas aeruginosa strains isolated from cystic fibrosis lung infections GSE25129: Comparative genomic hybridisation data from Pseudomonas aeruginosa strains isolated from cystic fibrosis lung infections
Project description:Application of a mass spectrometry -based approach to assess the lung microbiota composition and the associated metaproteomic functionality of subjects with cystic fibrosis
Project description:The goal of this study was to examine changes in gene expression over time in healthy and cystic fibrosis (CF) human airway epithelia infected with RSV.
Project description:Pseudomonas aeruginosa was repeatedly and intermittently exposed to tobramycin. Bacteria were grown in synthetic cystic fibrosis medium in wells of a 96-well microtiter plate. After 24 hours, more medium with or without tobramycin was added. After another 24 hours of incubation, a subsample of the well content was used to inoculate fresh synthetic cystic fibrosis medium in a 96-well microtiter plate. This was repeated for a total of 15 cycles. Evolved lineages were then DNA-sequenced to screen for genome changes.